
Nonparametric Stochastic Compositional Gradient Descent
for Q-Learning in Continuous Markov Decision Problems

Alec Koppel*†, Ekaterina Tolstaya*?, Ethan Stump†, Alejandro Ribeiro?

Abstract—We consider Markov Decision Problems defined over
continuous state and action spaces, where an autonomous agent
seeks to learn a map from its states to actions so as to maximize
its long-term discounted accumulation of rewards. We address
this problem by considering Bellman’s optimality equation de-
fined over action-value functions, which we reformulate into a
nested non-convex stochastic optimization problem defined over
a Reproducing Kernel Hilbert Space (RKHS). We develop a
functional generalization of stochastic quasi-gradient method to
solve it, which, owing to the structure of the RKHS, admits a
parameterization in terms of scalar weights and past state-action
pairs which grows proportionately with the algorithm iteration
index. To ameliorate this complexity explosion, we apply Kernel
Orthogonal Matching Pursuit to the sequence of kernel weights
and dictionaries, which yields a controllable error in the descent
direction of the underlying optimization method. We prove that
the resulting algorithm, called KQ-Learning, converges with
probability 1 to a stationary point of this problem, yielding a fixed
point of the Bellman optimality operator under the hypothesis
that it belongs to the RKHS. Under constant learning rates,
we further obtain convergence to a small Bellman error that
depends on the chosen learning rates. Numerical evaluation on
the Continuous Mountain Car and Inverted Pendulum tasks
yields convergent parsimonious learned action-value functions,
policies that are competitive with the state of the art, and exhibit
reliable, reproducible learning behavior.

I. INTRODUCTION

Markov Decision Problems offer a flexible framework to
address sequential decision making tasks under uncertainty [1],
and have gained broad interest in robotics [2], control [3],
finance [4], and artificial intelligence [5]. Despite this surge
of interest, few works in reinforcement learning address the
computational difficulties associated with continuous state and
action spaces in a principled way that guarantees convergence.
The goal of this work is to develop new reinforcement learning
tools for continuous problems which are provably stable and
whose complexity is at-worst moderate.

In the development of stochastic methods for reinforcement
learning, one may attempt to estimate the transition density
of the Markov Decision Process (MDP) (model-based [6]),
perform gradient descent on the value function with respect to
the policy (direct policy search [7]), and pursue value function
based (model-free [8], [9]) methods which exploit structural
properties of the setting to derive fixed point problems called

* indicates equally contributing authors. This work is supported by NSF
DGE-1321851, ARL DCIST CRA W911NF-17-2-0181, Intel DevCloud and
Intel Science and Technology Center for Wireless Autonomous Systems
(ISTC-WAS).

? Department of ESE, University of Pennsylvania, 200 South 33rd Street,
Philadelphia, PA 19104. Email: {eig, aribeiro}@seas.upenn.edu.

† Computational and Information Sciences Directorate, U.S. Army
Research Laboratory, Adelphi, MD, 20783. Email: {alec.e.koppel.civ,
ethan.a.stump2.civ}@mail.mil.

Bellman equations. We adopt the latter approach in this work
[10], motivated by the fact that an action-value function tells
us both how to find a policy and how to evaluate it in terms
of the performance metric we have defined, and that a value
function encapsulates structural properties of the relationship
between states, actions, and rewards.

It is well-known that approaches featuring the “deadly triad”
[5] of function approximation, bootstrapping (e.g. temporal-
difference learning), and off-policy training are in danger
of divergence, and the most well-understood techniques for
ensuring convergence in a stochastic gradient descent context
are those based on Gradient Temporal Difference (GTD) [11].
Though the final algorithm looks similar, our approach could
be considered as an alternative formulation and analysis of
the GTD family of algorithms centered on a flexible RKHS
representation that lets us address problems with nonlinear,
continuous state and action spaces in a natural way.

To understand our proposed approach, consider the fixed
point problem defined by Bellman’s optimality equation [12].
When the state and action spaces are finite and small enough
that expectations are computable, fixed point iterations may be
used. When this fails to hold, stochastic fixed point methods,
namely, Q-learning [9], may be used, whose convergence
may be addressed with asynchronous stochastic approximation
theory [13], [14]. This approach is only valid when the
action-value (or Q) function may be represented as a matrix.
However, when the state and action spaces are infinite, this is
no longer true, and the Q-function instead belongs to a generic
function space.

In particular, to solve the fixed point problem defined by
Bellman’s optimality equation when spaces are continuous,
one must surmount the fact that it is defined for infinitely many
unknowns, one example of Bellman’s curse of dimensionality
[12]. Efforts to sidestep this issue assume that the Q-function
admits a finite parameterization, such as a linear [15], [11]
or nonlinear [16] basis expansion, is defined by a neural
network [17], or that it belongs to a reproducing kernel Hilbert
Space (RKHS) [18], [19]. In this work, we adopt the later
nonparametric approach, motivated by the fact that combining
fixed point iterations with different parameterizations may
cause divergence [20], [21], and in general the Q-function
parameterization must be tied to the stochastic update to
ensure the convergence of both the function sequence and its
parameterization [22].

Our main result is a memory-efficient, non-parametric,
stochastic method that converges to a fixed point of the
Bellman optimality operator almost surely when it belongs to
a RKHS. We obtain this result by reformulating the Bellman
optimality equation as a nested stochastic program (Section II),
a topic investigated in operations research [23] and probability

[24], [25]. These problems have been addressed in finite
settings with stochastic quasi-gradient (SQG) methods [26]
which use two time-scale stochastic approximation to mitigate
the fact that the objective’s stochastic gradient not available
due to its dependence on a second expectation, which is
referred to as the double sampling problem in [11].

Here, we use a non-parametric generalization of SQG for
Q-learning in infinite MDPs (Section III), motivated by its
success for policy evaluation in finite [11], [16] and infinite
MDPs [27]. However, a function in a RKHS has comparable
complexity to the number of training samples processed,
which is in general infinite, an issue is often ignored in
kernel methods for Markov decision problems [28], [29], [30],
[31]. We address this bottleneck (the curse of kernelization)
by requiring memory efficiency in both the function sample
path and in its limit through the use of sparse projections
which are constructed greedily via matching pursuit [32], [33],
akin to [34], [27]. Greedy compression is appropriate since
(a) kernel matrices induced by arbitrary data streams will
likely become ill-conditioned and hence violate assumptions
required by convex methods [35], and (b) parsimony is more
important than exact recovery as the SQG iterates are not
the target signal but rather a stepping stone to Bellman fixed
point. Rather than unsupervised forgetting [36], we tie the
projection-induced error to guarantee stochastic descent [34],
only keeping dictionary points needed for convergence.

As a result, we conduct functional SQG descent via sparse
projections of the SQG. This maintains a moderate-complexity
sample path exactly towards Q∗, which may be made arbitrar-
ily close to a Bellman fixed point by decreasing the regularizer.
In contrast to the convex structure in [27], the Bellman opti-
mality equation induces a non-convex cost functional, which
requires us to generalize the relationship between SQG for
non-convex objectives and coupled supermartingales in [37]
to RKHSs. In doing so, we establish that the sparse projected
SQG sequence converges almost surely (Theorem 1) to the
Bellman fixed point with decreasing learning rates (Section
IV) and to a small Bellman error whose magnitude depends
on the learning rates when learning rates are held constant
(Theorem 2). Use of constant learning rates allows us to further
guarantee that the memory of the learned Q function remains
under control. Moreover, on Continuous Mountain Car [38]
and the Inverted Pendulum [39], we observe that our learned
action-value function attains a favorable trade-off between
memory efficiency and Bellman error, which then yields a
policy whose performance is competitive with the state of the
art in terms of episode average reward accumulation.

II. MARKOV DECISION PROCESSES

We model an autonomous agent in a continuous space as
a Markov Decision Process (MDP) with continuous states
s∈S ⊂Rp and actions a∈A⊂Rq. When in state s and taking
action a, a random transition to state s′ occurs according to
the conditional probability density P(s′|s,a). After the agent
transitions to a particular s′ from s, the MDP assigns an
instantaneous reward r(s,a,s′), where the reward function is a
map r : S ×A×S → R.

In Markov Decision problems, the goal is to find the action
sequence {at}∞

t=0 so as to maximize the infinite horizon accu-
mulation of rewards, i.e., the value function: V (s,{at}∞

t=0) :=
Es′ [∑

∞
t=0 γ tr(st ,at ,s′t) | s0 = s,{at}∞

t=0]. The action-value func-
tion Q(s,a) is the conditional mean of the value function given
the initial action a0 = a:

Q(s,a,{at}∞
t=1):=Es′

[
∞

∑
t=0

γ
tr(st ,at ,s′t)|s0=s,a0=a,{at}∞

t=1

]
(1)

We define Q∗(s,a) as the maximum of (1) with respect to
the action sequence. The reason for defining action-value
functions is that the optimal Q∗ may be used to compute the
optimal policy π∗ as

π
∗(s) = argmax

a
Q∗(s,a) . (2)

where a policy is a map from states to actions: π: S → A.
Thus, finding Q∗ solves the MDP. Value-function based ap-
proaches to MDPs reformulate (2) by shifting the index of the
summand in (1) by one, use the time invariance of the Markov
transition kernel, and the homogeneity of the summand, to
derive the Bellman optimality equation:

Q∗(s,a) = Es′
[
r(s,a,s′)+ γ max

a′
Q∗(s′,a′)

∣∣s,a]. (3)

where the expectation is taken with respect to the conditional
distribution P(ds′ | s,a) of the state s′ given the state action pair
(s,a). The right-hand side of Equation (3) defines the Bellman
optimality operator B∗: B(S ×A)→ B(S ×A) over B(S ×
A), the space of bounded continuous action-value functions
Q: B(S ×A)→ R:

(B∗Q)(s,a) :=
∫
S
[r(s,a,s′)+γ max

a′
Q(s′,a′)]P(ds′| s,a). (4)

[3] [Proposition 5.2] establishes that the fixed point of (4) is
the optimal action-value function Q∗. Thus, to solve the MDP,
we seek to compute the fixed point of (4) for all (s,a)∈S×A.

Compositional Stochastic Optimization. The functional
fixed point equation in (3) has to be simultaneously satisfied
for all state action pairs (s,a). Alternatively, we can integrate
(3) over an arbitrary distribution that is dense around any pair
(s,a) to write a nested stochastic optimization problem [37],
[34], [27]. To do so, begin by defining the function

f (Q;s,a)= Es′
[
r(s,a,s′)+ γ max

a′
Q(s′,a′)−Q(s,a)

∣∣s,a], (5)

and consider an arbitrary everywhere dense distribution
P(ds,da) over pairs (s,a) to define the functional

L(Q) =
1
2
Es,a

[
f 2(Q;s,a)

]
. (6)

Comparing (5) with (3) permits concluding that Q∗ is the
unique function that makes f (Q;s,a) = 0 for all (s,a). It then
follows that Q∗ is the only function that makes the functional
in (6) take the value L(Q) = 0. Since this functional is also
nonnegative, we can write the optimal Q function as

Q∗ = argmin
Q∈B(S×A)

L(Q) . (7)

Computation of the optimal policy is thus equivalent to solving
the optimization problem in (7). This requires a difficult search
over all bounded continuous functions B(S ×A). We reduce
this difficulty through a hypothesis on the function class.
Reproducing Kernel Hilbert Spaces We propose restricting
B(S ×A) to be a Hilbert space H equipped with a unique
reproducing kernel, an inner product-like map κ : (S ×A)×
(S ×A)→ R such that

(i) 〈 f,κ((s,a),·)〉H= f (s,a), (ii) H=span{κ((s,a),·)} (8)

In (8), property (i) is called the reproducing property. Re-
placing f by κ((s′,a′), ·) in (8) (i) yields the expression
〈κ((s′,a′), ·),κ((s,a),·)〉H = κ((s′,a′),(s,a)), the origin of the
term “reproducing kernel.” Moreover, property (8) (ii) states
that functions f ∈H admit a basis expansion in terms of kernel
evaluations (9). Function spaces of this type are referred to as
reproducing kernel Hilbert spaces (RKHSs).

We may apply the Representer Theorem to transform the
functional problem into a parametric one [40], [41]. In the
Reproducing Kernel Hilbert Space (RKHS), the optimal Q
function takes the following form

Q(s,a) =
N

∑
n=1

wnκ((sn,an),(s,a)) (9)

where (sn,an) is a sample of state-action pairs (s,a). Q∈H is
an expansion of kernel evaluations only at observed samples.

One complication of the restriction B(S×A) to the RKHS
H is that this setting requires the cost to be differentiable
with Lipschitz gradients, but the definition of L(Q) [cf. (6)]
defined by Bellman’s equation (4) is non-differentiable due to
the presence of the maximization over the Q function. This
issue may be addressed by either operating with approximate
smoothed gradients of a non-differentiable function [42] or
by approximating the non-smooth cost by a smooth one. We
adopt the latter approach by replacing the maxa Q(s,a′) term
in (6) by the softmax over continuous range A, i.e.

softmaxa′∈AQ(s′,a′) =
1
η

log
∫

a′∈A
eηQ(s′,a′)da′ (10)

and define the η-smoothed cost L(Q) as the one where the
softmax (10) in lieu of the hard maximum in (6). Subsequently,
we restrict focus to smoothed cost L(Q).

In this work, we restrict the kernel used to be in the family
of universal kernels, such as a Gaussian Gaussian Radial Basis
Function(RBF) kernel with constant diagonal covariance Σ,

κ((s,a),(s′,a′))=exp{−1
2
((s,a)−(s′,a′))Σ((s,a)−(s′,a′)T} (11)

motivated by the fact that a continuous function over a
compact set may be approximated uniformly by a function
in a RKHS equipped with a universal kernel [43].

To apply the Representer Theorem, we require the cost to
be coercive in Q [41], which may be satisfied through use
of a Hilbert-norm regularizer, so we define the regularized
cost functional J(Q) = L(Q) + (λ/2)‖Q‖2

H and solve the
regularized problem (7), i.e.

Q∗ = argmin
Q∈H

J(Q) = argmin
Q∈H

L(Q)+
λ

2
‖Q‖2

H. (12)

Thus, finding a locally optimal action-value function in an
MDP amounts to solving the RKHS-valued compositional
stochastic program with a non-convex objective defined by the
Bellman optimality equation (4). This action-value function
can then be used to obtain the optimal policy (2). In the
following section, we turn to iterative stochastic methods to
solve (12). We point out that this is a step back from the
original intent of solving (7) to then find optimal policies π∗

using (2). This is the case because the assumption we have
made about Q∗ being representable in the RKHS H need not
be true. More importantly, the functional J(Q) is not convex
in Q and there is no guarantee that a local minimum of J(Q)
will be the optimal policy Q∗. This is a significant difference
relative to policy evaluation problems [27].

III. STOCHASTIC QUASI-GRADIENT METHOD

To solve (12), we propose applying a functional variant of
stochastic quasi-gradient (SQG) descent to the loss function
J(Q) [cf. (12)]. The reasoning for this approach rather than a
stochastic gradient method is the nested expectations cause the
functional stochastic gradient to be still dependent on a second
expectation which is not computable, and SQG circumvents
this issue. Then, we apply the Representer Theorem (9) (“ker-
nel trick”) to obtain a parameterization of this optimization
sequence, which has per-iteration complexity. We then mitigate
this untenable complexity growth while preserving optimality
using greedy compressive methods, inspired by [34], [27].

To find a stationary point of (12) we use quasi-gradients
∇QJ(Q) of the functional J(Q) relative to the function Q in
an iterative process. To do so, introduce an iteration index t and
let Qt be the estimate of the stationary point at iteration t. Fur-
ther consider a random state action pair (st ,at) independently
and randomly chosen from the distribution P(ds,da). Action
at is executed from state st resulting in the system moving to
state s′t . This outcome is recorded along with reward r(st ,at ,s′t)
and the action a′t that maximizes the action-value function Qt
when the system is in state s′t , i.e.,

a′t := argmax
a′

Qt(s′t ,a
′). (13)

The state (S) st , action (A) at , reward (R) r(st ,at ,s′t), state
(S) s′t , action (A) a′t are collectively referred to as the SARSA
tuple at time t.

Further consider the expressions for J(Q) in (12) and L(Q)
in (6) and exchange order of the expectation and differentiation
operators to write the gradient of J(Q) as

∇QJ(Qt) = Est ,at

[
f (Qt ;st ,at)×∇Q f (Qt ;st ,at)

]
+λQt . (14)

To compute the directional derivative ∇Qg(Q) in (14), we need
to address differentiation of the softmax and its approximation
properties with respect to the exact maximum, which is done
in the following remark.

Remark 1 (Softmax Gradient Error) The functional deriva-
tive of (10) takes the form

∇Qsoftmaxa′∈AQ(s′,a′) =
∫

a′∈A eηQ(s′,a′)κ(s′,a′, ·)da∫
a′∈A eηQ(s′,a′)da′

(15)

by applying Leibniz Rule, Chain Rule, and the reproducing
property of the kernel. Moreover, a factor of η cancels.
Observe that as η → ∞, the softmax becomes closer to the
exact (hard) maximum, and the integrals in (15) approach unit,
and the only term that remains is κ(s′,a′, ·). This term may
be used in place of (15) to avoid computing the integral, and
yields the functional gradient of the exact maximum instead
of the softmax. Doing so, however, comes at the cost of
computing of the maximizer of the Q function a′.

Observe that to obtain samples of ∇QJ(Q,s,a,s′) we re-
quire two different queries to a simulation oracle: one to
approximate the inner expectation over the Markov transition
dynamics defined by s′, and one for each initial pair s,a which
defines the outer expectation. This complication, called the
“double sampling problem,” was first identified in [26], [44],
has been ameliorated through use of two time-scale stochastic
approximation, which may be viewed as a stochastic variant
of quasi-gradient methods [37].

Following this line of reasoning, we build up the total
expectation of one of the terms in (14) while doing stochastic
descent with respect to the other. In principle, it is possible to
build up the expectation of either term in (14), but the mean of
the difference of kernel evaluations is of infinite complexity.
On the other hand, the temporal action difference, defined as
the difference between the action-value function evaluated at
state-action pair (s,a) and the action-value function evaluated
at next state and the instantaneous maximizing action (s′,a′):

δ := r(s,a,s′)+ γQ(s′,a′)−Q(s,a) (16)

is a scalar, and thus so is its total expected value. Therefore,
for obvious complexity motivations, we build up the total ex-
pectation of (16). To do so, we propose recursively averaging
realizations of (16) through the following auxiliary sequence
zt , initialized as null z0 = 0:

δt := r(st ,at ,s′t)+ γQ(s′t ,a
′
t)−Q(st ,at) ,

zt+1 = (1−βt)zt +βtδt (17)

where (st ,at ,s′t) is an independent realization of the random
triple (s,a,s′) and βt ∈ (0,1) is a learning rate.

To define the stochastic descent step, we replace the first
term inside the outer expectation in (14) with its instantaneous
approximation [γκ((s′,a′), ·)−κ((s,a), ·)] evaluated at a sam-
ple triple (st ,at ,s′t), which yields the stochastic quasi-gradient
step:

Qt+1=(1−αtλ)Qt(·)−αt(γκ(s′t,a
′
t,·)−κ(st,at,·))zt+1) (18)

where the coefficient (1−αtλ) comes from the regularizer
and αt is a positive scalar learning rate. Moreover, a′t =
argmaxb Qt(s′,b) is the instantaneous Q-function maximizing
action. Now, using similar logic to [36], we may extract a
tractable parameterization of the infinite dimensional function
sequence (18), exploiting properties of the RKHS (8).
Kernel Parametrization Suppose Q0 = 0 ∈ H. Then the
update in (18) at time t, inductively making use of the
Representer Theorem, implies the function Qt is a kernel

expansion of past state-action tuples (st ,at ,s′t)

Qt(s,a) =
2(t−1)

∑
n=1

wnκ(vn,(s,a)) = wT
t κXt((s,a)) (19)

The kernel expansion in (19), together with the functional up-
date (18), yields the fact that functional SQG in H amounts to
updating the kernel dictionary Xt ∈ Rp×2(t−1) and coefficient
vector wt ∈ R2(t−1) as

Xt+1 = [Xt ,(st ,at),(s′t ,a
′
t)] ,

wt+1 = [(1−αtλ)wt ,αtzt+1,−αtγzt+1] (20)

In (20), the coefficient vector wt ∈R2(t−1) and dictionary Xt ∈
Rp×2(t−1) are defined as

wt =[w1, . . . ,w2(t−1)] , (21)

Xt =[(s1,a1),(s′1,a
′
1), . . . ,(st−1,at−1),(s′t−1,a

′
t−1)],

and in (19), we introduce the notation vn = (sn,an) for n even
and vn = (s′n,a′n) for n odd. Moreover, in (19), we make use
of a concept called the empirical kernel map associated with
dictionary Xt , defined as

κXt (·) = [(κ((s1,a1), ·),κ((s′1,a′1), ·), . . . ,
. . . ,κ((st−1,at−1), ·),κ((s′t−1,a

′
t−1), ·)]T . (22)

Observe that (20) causes Xt+1 to have two more columns
than its predecessor Xt . We define the model order as the
number of data points (columns) Mt in the dictionary at time
t, which for functional stochastic quasi-gradient descent is
Mt = 2(t−1). Asymptotically, then, the complexity of storing
Qt(·) is infinite, and even for moderately large training sets
is untenable. Next, we address this intractable complexity
blowup, inspired by [34], [27], using greedy compression
methods [32].
Sparse Stochastic Subspace Projections Since the update
step (18) has complexity O(t) due to the RKHS parametriza-
tion, it is impractical in settings with streaming data or arbitrar-
ily large training sets. We address this issue by replacing the
stochastic quasi-descent step (18) with an orthogonally pro-
jected variant, where the projection is onto a low-dimensional
functional subspace of the RKHS HDt+1 ⊂H

Qt+1 = PHDt+1
[(1−αtλ)Qt(·)
−αt(γκ(s′t ,a

′
t , ·)−κ(st ,at , ·))zt+1)] (23)

where HDt+1 = span{((sn,an), ·)}Mt
n=1 for some collection of

sample instances {(sn,an)} ⊂ {(st ,at)}u≤t . We define κD(·) =
{κ((s1,a1), ·) . . .κ((sM,aM), ·)} and κD,D as the resulting ker-
nel matrix from this dictionary. We seek function parsimony
by selecting dictionaries D such that Mt << O(t). Suppose
that Qt is parameterized by model points Dt and weights wt .
Then, we denote Q̃t+1(·) = (1−αtλ)Qt(·)−αt(γκ(s′t ,a′t , ·)−
κ(st ,at , ·))zt+1) as the SQG step without projection. This may
be represented by dictionary and weight vector [cf. (20)]:

D̃t+1 = [Dt ,(st ,at),(s′t ,a
′
t)] ,

w̃t+1 = [(1−αtλ)wt ,αtzt+1,−αtγzt+1] , (24)

Algorithm 1 KQ-Learning

Input: C,{αt ,βt}t=0,1,2...
1: Q0(·) = 0,D0 = [],w0 = [],z0 = 0
2: for t = 0,1,2, . . . do
3: Obtain sample (st ,at ,s′t) via exploratory policy
4: Compute maximizing action

a′ = argmaxa Qt(s′t ,a)
5: Update temporal action diff. δt and aux. seq. zt+1

δt = r(st ,at ,s′t)+ γQt(s′t ,a′t)−Qt(st ,at)
zt+1 = (1−βt)zt +βtδt .

6: Compute functional stochastic quasi-grad. step
Q̃t+1=(1−αtλ)Qt−αtzt+1(γκ(s′t,a′t,·)−κ(st ,at ,·)).

7: Update dictionary D̃t+1 = [Dt ,(s,a),(s′,a′)] ,
weights w̃t+1 = [(1−αtλ)wt ,αtzt+1,−αtγzt+1].

8: Compress function using KOMP with budget εt =Cα2
t

(Qt+1,Dt+1,wt+1) = KOMP(Q̃t+1, D̃t+1, w̃t+1,εt)
9: end for

10: return Q

where zt+1 in (24) is computed by (17) using Qt obtained from
(23):

δt := r(st ,at ,s′t)+ γQt(s′t ,a
′
t)−Qt(st ,at) ,

zt+1 = (1−βt)zt +βtδt . (25)

Observe that D̃t+1 has M̃t+1 = Mt + 2 columns which is the
length of w̃t+1. We proceed to describe the construction of the
subspaces HDt+1 onto which the SQG iterates are projected
in (23). Specifically, we select the kernel dictionary Dt+1 via
greedy compression. We form Dt+1 by selecting a subset of
Mt+1 columns from D̃t+1 that best approximates Q̃t+1 in terms
of Hilbert norm error. To accomplish this, we use kernel
orthogonal matching pursuit [34], [27] with error tolerance
εt to find a compressed dictionary Dt+1 from D̃t+1, the one
that adds the latest samples. For a fixed dictionary Dt+1, the
update for the kernel weights is a least-squares problem on
the coefficient vector:

wt+1 = κ
−1
Dt+1Dt+1

κDt+1D̃t+1
w̃t+1 (26)

We tune εt to ensure both stochastic descent and finite model
order – see the next section.

We summarize the proposed method, KQ-Learning, in Al-
gorithm 1, the execution of the stochastic projection of the
functional SQG iterates onto subspaces HDt+1 . We begin with
a null function Q0 = 0, i.e., empty dictionary and coeffi-
cients (Step 1). At each step, given an i.i.d. sample (st ,at ,s′t)
and step-size αt , βt (Steps 2-5), we compute the uncon-
strained functional SQG iterate Q̃t+1(·) = (1− αtλ)Qt(·)−
αt(γκ(s′t ,a′t , ·)− κ(st ,at , ·))zt+1) parametrized by D̃t+1 and
w̃t+1 (Steps 6-7), which are fed into KOMP (Algorithm 2)
[34] with budget εt , (Step 8). KOMP then returns a lower
complexity estimate Qt of Q̃t that is εt away in H.

IV. CONVERGENCE ANALYSIS

In this section, we shift focus to the task of establishing
that the sequence of action-value function estimates generated
by Algorithm 1 actually yield a locally optimal solution to

Algorithm 2 Destructive Kernel Orthogonal Matching Pursuit
(KOMP)

Input: function Q̃ defined by dict D̃∈Rp×M̃ , w̃∈RM̃ , approx.
budget εt > 0
Initialize : Q= Q̃, dictionary D= D̃ with indices I, model
order M = M̃, coeffs w = w̃.

1: while candidate dictionary is non-empty I 6= /0 do
2: for j = 1, . . . ,M̃ do
3: Find minimal approximation error with dictionary

element d j removed
γ j = minwI\{ j}∈RM−1 ‖Q̃(·)−∑k∈I\{ j}wkκ(dk, ·)‖H

4: end for
5: Find dictionary index minimizing approximation error

: j∗ = argmin j∈I γ j
6: if minimal approximation error exceeds threshold γ j∗ >

εt then
7: break
8: else
9: Prune dictionary D← DI\{ j∗}

10: Revise set I←I\{ j∗} and model order M←M−1
11: Compute updated weights w defined by the current

dictionary D
w = argminw∈RM ‖Q̃(·)−wT κD(·)‖H

12: end if
13: end while
14: return V,D,w of model order M ≤ M̃ such that ‖Q−

Q̃‖H ≤ εt

the Bellman optimality equation, which, given intrinsic the
non-convexity of the problem setting, is the best one may
hope for in general through use of numerical stochastic opti-
mization methods. Our analysis extends the ideas of coupled
supermartingales in reproducing kernel Hilbert spaces [27],
which have been used to establish convergent policy evaluation
approaches in infinite MDPs (a convex problem), to non-
convex settings, and further generalizes the non-convex vector-
valued setting of [37].

Before proceeding with the details of the technical setting,
we introduce a few definitions which simplify derivations
greatly. In particular, for further reference, we use (13) to de-
fine a′t = argmaxa Qt(s′t ,a), the instantaneous maximizer of the
action-value function and defines the direction of the gradient.
We also define the functional stochastic quasi-gradient of the
regularized objective

∇̂QJ(Qt ,zt+1;st ,at ,s′t) =
(γκ((s′t ,a

′
t), ·)−κ((st ,at), ·))zt+1 +λQt (27)

and its sparse-subspace projected variant as

∇̃QJ(Qt ,zt+1;st ,at ,s′t) =
(Qt−PHDt+1

[Qt −αt∇̂QJ(Qt ,zt+1;st ,at ,s′t)])/αt (28)

Note that the update may be rewritten as a stochastic projected
quasi-gradient step rather than a stochastic quasi-gradient step
followed by a set projection, i.e.,

Qt+1 = Qt −αt∇̃QJ(Qt ,zt+1;st ,at ,s′t) (29)

With these definitions, we may state our main assumptions
required to establish convergence of Algorithm 1.

Assumption 1 The state space S ⊂ Rp and action space
A ⊂ Rq are compact, and the reproducing kernel map may
be bounded as

sup
s∈S,a∈A

√
κ((s,a),(s,a)) = K < ∞ (30)

Moreover, the subspaces HDt are intersected with some finite
Hilbert norm ball for each t.

Assumption 2 The temporal action difference δ and auxiliary
sequence z satisfy the zero-mean, finite conditional variance,
and Lipschitz continuity conditions, respectively,

E[δ |s,a] = δ̄ , E[(δ−δ̄)2]≤σ
2
δ
, E[z2 |s,a]≤G2

δ
(31)

where σδ and Gδ are positive scalars, and δ̄ = E{δ | s,a}
is the expected value of the temporal action difference condi-
tioned on the state s and action a.

Assumption 3 The functional gradient of the temporal ac-
tion difference is an unbiased estimate for ∇QJ(Q) and the
difference of the reproducing kernels expression has finite
conditional variance:

E[(γκ((s′t ,a
′
t), ·)−κ((st ,at), ·))δ] = ∇QJ(Q) (32)

E{‖γκ((s′t ,a
′
t), ·)−κ((st ,at), ·)‖2

H|Ft} ≤ G2
Q (33)

Moreover, the projected stochastic quasi-gradient of the ob-
jective has finite second conditional moment as

E{‖∇̃QJ(Qt ,zt+1;st ,at ,s′t)‖2
H|Ft} ≤ σ

2
Q (34)

and the temporal action difference is Lipschitz continuous with
respect to the action-value function Q. Moreover, for any two
distinct δ and δ̄ , we have

‖δ − δ̄‖ ≤ LQ‖Q− Q̃‖H (35)

with Q, Q̃ ∈H distinct Q-functions; LQ > 0 is a scalar.

Assumption 1 regarding the compactness of the state and
action spaces of the MDP holds for most application settings
and limits the radius of the set from which the MDP trajectory
is sampled. The mean and variance properties of the temporal
difference stated in Assumption 2 are necessary to bound the
error in the descent direction associated with the stochastic
sub-sampling and are required to establish convergence of
stochastic methods. Assumption 3 is similar to Assumption 2,
but instead of establishing bounds on the stochastic approxi-
mation error of the temporal difference, limits stochastic error
variance in the RKHS. The term related to the maximum of
the Q function in the temporal action difference is Lipschitz
in the infinity norm since Q is automatically Lipschitz since
it belongs to the RKHS. Thus, this term can be related to the
Hilbert norm through a constant factor. Hence, (35) is only
limits how non-smooth the reward function may be. These are
natural extensions of the conditions needed for vector-valued
stochastic compositional gradient methods.

Due to Assumption 1 and the use of set projections in (23),
we have that Qt is always bounded in Hilbert norm, i.e., there
exists some 0 < D < ∞ such that

‖Qt‖H ≤ D for all t . (36)

With these technical conditions, we can derive a coupled
stochastic descent-type relationship of Algorithm 1 and then
apply the Coupled Supermartingale Theorem [45][Lemma 6]
to establish convergence, which we state next.

Theorem 1 Consider the sequence zt and {Qt} as stated
in Algorithm 1. Assume the regularizer is positive λ > 0,
Assumptions 1-3 hold, and the step-size conditions hold, with
C > 0 a positive constant:

∞

∑
t=1

αt = ∞,
∞

∑
t=1

βt = ∞,
∞

∑
t=1

α
2
t +β

2
t +

α2
t

βt
< ∞,εt =Cα

2
t (37)

Then ‖∇QJ(Q)‖H converges to null with probability 1, and
hence Qt attains a stationary point of (12). In particular,
the limit of Qt achieves the regularized Bellman fixed point
restricted to the RKHS.

See Appendix B.
Theorem 1 establishes that Algorithm 1 converges almost

surely to a stationary solution of the problem (12) defined
by the Bellman optimality equation in a continuous MDP.
This is one of the first Lyapunov stability results for Q-
learning in continuous state-action spaces with nonlinear
function parameterizations, which are intrinsically necessary
when the Q-function does not admit a lookup table (matrix)
representation, and should form the foundation for value-
function based reinforcement learning in continuous spaces.
A key feature of this result is that the complexity of the
function parameterization will not grow untenably large due
to the use of our KOMP-based compression method which
ties the sparsification bias εt to the algorithm step-size αt . In
particular, by modifying the above exact convergence result
for diminishing learning rates to one in which they are kept
constant, we are able to keep constant compression budgets as
well, and establish convergence to a neighborhood as well as
the finiteness of the model order of Q, as we state next.

Theorem 2 Consider the sequence zt and {Qt} as stated in
Algorithm 1. Assume the regularizer is positive λ > 0, As-
sumptions 1-3 hold, and the step-sizes are chosen as constant
such that 0 < α < β < 1, with ε = Cα2 and the parsimony
constant C > 0 is positive. Then the Bellman error converges
to a neighborhood in expectation, i.e.:

liminf
t→∞

E[J(Qt)]≤O
(

αβ

β −α

[
1+

√
1+

β −α

αβ

(
1
β
+

β 2

α2

)])
(38)

See Appendix C.
The expression on the right-hand side of (38) is a compli-

cated posynomial of α and β , but is positive provided β > α ,
and for a fixed β increases as α increases. This means that
more aggressive selections of α , for a given β , yield a larger
limiting lower bound on the Bellman error. A simple example

which satisfies the constant step-size conditions 0<α < β < 1
is β = α + ι for some small constant ι > 0. This is consistent
with the diminishing step-size conditions where αt/βt → 0
means that αt must be smaller than βt which is in (0,1).

An additional salient feature of the parameter choice given
in Theorem 2 is that [27][Corollary 1] applies, and thus
we may conclude that the Q-function parameterization is at-
worst finite during learning when used with constant step-
sizes and compression budget. In subsequent sections, we
investigate the empirical validity of the proposed approach
on two autonomous control tasks: the Inverted Pendulum
and Continuous Mountain Car, for which observe consistent
convergence in practice. To do so, first some implementation
details of Algorithm 1 must be addressed.

V. PRACTICAL CONSIDERATIONS

The convergence guarantees for Algorithm 1 require se-
quentially observing state-action-next-state triples (st ,at ,rt ,s′t)
independently and identically distributed. Doing so, however,
only yields convergence toward a stationary point, which
may or may not be the optimal Q function. To improve
the quality of stationary points to which we converge, it is
vital to observe states that yield reward (an instantiation of
the explore-exploit tradeoff). To do so, we adopt a standard
practice in reinforcement learning which is to bias actions
towards states that may accumulate more reward.

The method in which we propose to bias actions is by
selecting them according to the current estimate of the optimal
policy, i.e., the greedy policy. However, when doing so, the
KQ-Learning updates (18) computed using greedy samples
(st ,at ,rt ,s′t) are composed of two points nearby in S ×A
space. These points are then evaluated by kernels and given
approximately equal in opposite weight. Thus, this update is
immediately pruned away during the execution of KOMP [32],
[46], [34]. In order to make use of the greedy samples and
speed up convergence, we project the functional update onto
just one kernel dictionary element, resulting in the update step:

Q̃t+1=(1−αtλ)Qt(·)+αt(κ(st ,at ,·))zt+1) (39)

The resulting procedure is summarized as Algorithm 3. First,
trajectory samples are obtained using a greedy policy. Then,
the temporal-action difference is computed and averaged recur-
sively. Finally, we update the Q function via (39) and compress
it using Algorithm 2.

ρ-Greedy Actions and Hybrid Update To address the
explore-exploit trade-off, we use an ρ-greedy policy [47]: with
probability ρ we select a random action, and select a greedy
action with probability 1− ρ . We adopt this approach with
ρ decreasing linearly during training, meaning that as time
passes more greedy actions are taken.

The algorithm when run with a ρ-greedy policy is described
as the Hybrid algorithm, which uses Algorithm 1 when
exploratory actions are taken and Algorithm 3 for greedy
actions. Practically, we find it useful to judiciously use training
examples, which may be done with a data buffer. Thus, the
hybrid algorithm is as follows: First, we accumulate trajectory
samples in a buffer. Along with the (st ,at ,rt ,s′t) sample, we

Algorithm 3 Semi-Gradient Greedy KQ-Learning

Input: C,{αt ,βt}t=0,1,2...
1: Q0(·) = 0,D0 = [],w0 = [],z0 = 0
2: for t = 0,1,2, . . . do
3: Obtain sample (st ,at ,s′t) via greedy policy
4: Compute maximizing action:

a′t=πt(s′t)=argmaxaQt(s′t ,a)
5: Update temporal action diff. δt and aux. seq. zt+1

δt = r(st ,at ,s′t)+ γQt(s′t ,a′t)−Qt(st ,at)
zt+1 = (1−βt)zt +βtδt .

6: Compute update step
Q̃t+1=(1−αtλ)Qt(·)+αtzt+1κ(st ,at ,·).

7: Update dictionary D̃t+1 = [Dt ,(s,a)] ,
weights w̃t+1 = [(1−αtλ)wt ,αtzt+1].

8: Compress function using KOMP with budget εt =Cα2
t

(Qt+1,Dt+1,wt+1) = KOMP(Q̃t+1, D̃t+1, w̃t+1,εt)
9: end for

10: return Q

store an indicator whether at was an exploratory action or
greedy with respect to Qt−1. Then, samples are drawn at
random from the buffer for training. We explore two different
methods for obtaining samples from the buffer: uniformly at
random, and prioritized sampling, which weighs each sample
in the buffer by its observed Bellman error. For greedy actions,
we use the update in (39), and for exploratory actions, we use
the KQ-learning update from 1. Finally, we use KOMP to
compress the representation of the Q function.

Maximizing the Q Function In order to implement Al-
gorithm 3, we apply simulated annealing [48] to evaluate the
instantaneous maximizing action at = argmaxa Qt((st ,a). For a
general reproducing kernel κ(·, ·), maximizing over a weighted
sum of kernels is a non-convex optimization problem, so we
get stuck in undesirable stationary points [49]. To reduce
the chance that this undesirable outcome transpires, we use
simulated annealing. First, we sample actions a uniformly at
random from the action space. Next, we use gradient ascent
to refine our estimate of the global maximum of Q for state s.
We use the Gaussian Radial Basis Function(RBF) kernel (11),
so the Q function is differentiable with respect to an arbitrary
action a:

(∇aQ)(s,a) = Q(s,a)
M

∑
m=1

wmΣa(a−am)
T (40)

and that gradient evaluations are cheap: typically their com-
plexity scales with the model order of the Q function which
is a kept under control using Algorithm 2.

Remark 2 Observe that (39) bears a phantom resemblance to
Watkins’ Q-Learning algorithm [9]; however, it is unclear how
to extend [9] to continuous MDPs where function approxima-
tion is required. In practice, using (39) for all updates, we
observe globally steady policy learning and convergence of
Bellman error, suggesting a link between (39) and stochastic
fixed point methods [13], [14]. This link is left to future inves-
tigation. For now, we simply note that stochastic fixed point
iteration is fundamentally different than stochastic descent

Environment Algorithm Replay Buffer Policy Steps α β C Kernel Σ Order Loss Rewards
1 Inv. Pendulum KQ Yes Exploratory 100K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 137.17 0.79 -1194.35
2 Inv. Pendulum KQ Yes ρ-greedy 100K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 111.71 22.26 -1493.65
3 Inv. Pendulum Hybrid Yes ρ-greedy 500K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 636.2 0.99 -160.01
4 Inv. Pendulum SG Yes ρ-greedy 200K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 749.75 2.92 -150.36
5 Inv. Pendulum KQ No Exploratory 100K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 134.14 0.72 -1258.43
6 Inv. Pendulum KQ No ρ-greedy 100K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 257.71 14.5 -1258.45
7 Inv. Pendulum Hybrid No ρ-greedy 500K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 684.39 0.61 -180.37
8 Inv. Pendulum SG No ρ-greedy 200K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 772.69 1.88 -247.17
9 Cont. M. Car KQ Prioritized Exploratory 100K 0.25 1.00 0.10 [0.8,0.07,1.0] 44.54 0.41 -20.61
10 Cont. M. Car KQ Prioritized ρ-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 67.0 0.92 85.43
11 Cont. M. Car Hybrid Prioritized ρ-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 71.22 0.76 94.72
12 Cont. M. Car SG Prioritized ρ-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 87.56 0.81 94.75
13 Cont. M. Car KQ No Exploratory 100K 0.25 1.00 0.10 [0.8,0.07,1.0] 36.53 0.29 -21.41
14 Cont. M. Car KQ No ρ-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 58.42 0.21 80.92
15 Cont. M. Car Hybrid No ρ-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 57.26 0.48 94.96
16 Cont. M. Car SG No ρ-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 63.13 0.42 94.83

TABLE I: A summary of parameter selection details for our comparison of KQ-Learning(KQ), Hybrid, and Semi-Gradient(SG)
methods. In right-most column, we display the limiting model order, training loss (Bellman error) and accumulation of rewards
during training. The best results for each problem setting are bolded for emphasis, which “solve” the problem according to
reward benchmarks set by OpenAI. We observe the replay buffer improves learning in the Pendulum domain but yields little
benefit in the Mountain Car problem. Interestingly, the Hybrid algorithm in the Pendulum domain attains a smaller training
Bellman error but less rewards than the SG approach.

0 1 2 3 4 5
Training Steps (105)

−1500

−1000

−500

0

A
ve
ra
ge

E
p
is
od
e
R
ew

ar
d

(a) Average Training Reward

0 1 2 3 4 5
Training Steps (105)

0.00

0.01

0.02

0.03

0.04

N
or
m
al
iz
ed

B
el
lm

an
E
rr
or

(b) Training Bellman Error

0 1 2 3 4 5
Training Steps (105)

100

200

300

400

500

600

M
od
el
O
rd
er

(c) Model Order of Q

Fig. 1: Results of 10 experiments over 500,000 training steps were averaged (black curve) to demonstrate the learning progress
for the effective, convergent, and parsimonious solution for the Pendulum domain using the Hybrid algorithm with a replay
buffer, Row 3 in Table I. Fig. 1a shows the average reward obtained by the ρ-greedy policy during training. Fig. 1b shows
the Bellman error for training samples (6) normalized by the Hilbert norm of Q, which converges to a small non-zero value.
Fig. 1c shows the number of points parameterizing the kernel dictionary of Q during training, which remains under 700 on
average. Overall, we solve Pendulum with a model complexity reduction by orders of magnitude relative to existing methods
[17], [50], with a much smaller standard deviation around the average reward accumulation, meaning that these results are
replicable.

methods which rely on the construction of supermartingales,
so results from the previous section do not apply to (39).
Moreover, this update has also been referred to as a temporal
difference “semi-gradient” update in Chapters 9-10 of [5].

VI. EXPERIMENTS

We shift focus to experimentation of the methods developed
and analyzed in the previous sections. Specifically, we bench-
mark the proposed algorithms on two classic control problems,
the Inverted Pendulum [39], [41] and the Continuous Mountain
Car [38], which are featured in OpenAI Gym [51].

In the Inverted Pendulum problem, the state space is p =
3 dimensional, consisting of the sine of the angle of the

pendulum, the cosine of the angle, and the angular veloc-
ity, bounded within [−1.0,1.0], [−1.0,1.0], and [−8.0,8.0]
respectively. The action space is q = 1 dimensional: joint
effort, within the interval [−2.0,2.0]. The reward function is
r(θ , θ̇ ,a) =−(θ 2 +0.1θ̇ 2 +0.001a2), where θ is the angle of
the pendulum relative to vertical, and θ̇ is the angular velocity.
The goal of the problem is to balance the pendulum at the
unstable equilibrium where θ = 0.

In the Continuous Mountain Car problem, the state space
is p = 2 dimensional, consisting of position and velocity,
bounded within [−1.2,0.6] and [−0.07,0.07], respectively. The
action space is q = 1 dimensional: force on the car, within

0 1 2 3 4 5
Training Steps (105)

−50

0

50

100
A
ve
ra
ge

E
p
is
od
e
R
ew

ar
d

(a) Average Training Reward

0 1 2 3 4 5
Training Steps (105)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
or
m
al
iz
ed

B
el
lm

an
E
rr
or

(b) Normalized Test Bellman Error

0 1 2 3 4 5
Training Steps (105)

0

20

40

60

80

M
od
el
O
rd
er

(c) Model Order of Q

Fig. 2: Results of 10 experiments over 500,000 training steps were averaged (black curve) to demonstrate the learning progress
for Continuous Mountain Car using the Hybrid algorithm with no replay buffer, Row 15 in Table I. Fig. 2a shows the average
reward obtained by the ρ-greedy policy during training. An average reward over 90 (green) indicates that we have solved
Continuous Mountain Car, steering towards the goal location. Fig. 2b shows the normalized Bellman error during training,
which converges to a small non-zero value. Fig. 2c shows the number of points parameterizing the kernel dictionary of Q
during training, which remains under 80 on average. Overall, we solve Continuous Mountain Car with a complexity reduction
by orders of magnitude relative to existing methods[17], [50]. We observe that learning progress has higher variance, which
we hypothesize is related to the sparsity of the reward signal.

−1.0 −0.5 0.0 0.5

Position (m)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

V
el

oc
it

y
(m

/s
)

−100

−75

−50

−25

0

25

50

75

100

(a) Value function V (s) derived from limiting Q(s,a)

−1.0 −0.5 0.0 0.5

Position (m)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

V
el

oc
it

y
(m

/s
)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Policy π(s) derived from limiting Q(s,a)

Fig. 3: For the mountain car problem, the learned Q-function is easily interpretable: we may visualize the value function,
V (s) = maxa Q(s,a) (3a) and corresponding policy π(s) = argmaxa Q(s,a) (3b). In Fig. 3a, the color indicates the value of the
state, which is highest (dark red) near the goal 0.6. At this position, for any velocity, the agent receives an award of 100 and
concludes the episode. In Fig. 3b, the color indicates the force on the car (action), for a given position and velocity (state).
The learned policy takes advantage of the structure of the environment to accelerate the car without excess force inputs. The
dictionary points are pictured in white and provide coverage of the state-action space.

the interval [−1,1]. The reward function is 100 when the car
reaches the goal at position 0.45, and −0.1a2 for any action
a. For each training episode, the start position of the car was
initialized uniformly at random in the range [−0.6,0.4].

For all experiments with the Inverted Pendulum and the
Continuous Mountain Car problems, we used Gaussian kernels
with a fixed non-isotropic bandwidth. The relevant parameters
are the step-sizes α and β , the regularizer λ , and the approxi-
mation error constant, C, where we fix the compression budget
ε =Cα2. These learning parameters were tuned through a grid
search procedure, and are summarized in Table I.

We investigate two methods for exploration as the agent
traverses the environment. When using an exploratory policy,
actions are selected uniformly at random from the action
space. When using an ρ-greedy policy, we select actions
randomly with probability 1, which linearly decays to 0.1 after
105 exploratory training steps. In addition, we explore the use
of a replay buffer. This method re-reveals past data to the agent
uniformly at random. For the Mountain Car problem, we also
use prioritized memory which replays samples based on the
magnitude of their temporal action difference.

A comprehensive summary of our experimental results

may be found in Table I. We bold which methods perform
best across many different experimental settings. Interestingly,
playback buffers play a role in improving policy learning in
the Pendulum domain but not for Mountain Car, suggesting
that their merit demands on the reward structure of the MDP.

We spotlight the results of this experiment in the Pendulum
domain for the Hybrid algorithm in Figure 1: here we plot
the normalized Bellman test error Fig. 1b, defined by the
sample average approximation of (6) divided by the Hilbert
norm of Qt over a collection of generated test trajectories, as
well as the average rewards during training (Fig. 1a), and the
model order, i.e., the number of training examples in the kernel
dictionary (Fig. 1c), all relative to the number of training
samples processed.

Observe that the Bellman test error converges and the
interval average rewards approach −200, which is comparable
to top entries on the OpenAI Leaderboard [51], such as Deep
Deterministic Policy Gradient [50] . Moreover, we obtain this
result with a complexity reduction by orders of magnitude
relative to existing methods for Q-function and policy rep-
resentation. This trend is corroborated for the Continuous
Mountain Car in Figure 2: the normalized Bellman error
converges and the model complexity remains moderate. Also,
observe that the interval average rewards approach 90, which
is the benchmark used to designate a policy as “solving”
Continuous Mountain Car.

Additionally, few heuristics are required to ensure KQ-
Learning converges in contrast to neural network approaches
to Q-learning. One shortcoming of our implementation is its
sample efficiency, which could improved through a mini-batch
approach. Alternatively, variance reduction, acceleration, or
Quasi-Newton methods would improve the learning rate.

A feature of our method is the interpretability of the
resulting Q function, which we use to plot the value function
(3a) and policy (3b). One key metric is the coverage of
the kernel points in the state-action space. We can make
conclusions about the importance of certain parts of the space
for obtaining as much value as possible by the density of the
model points throughout the space. This may have particular
importance in mechanical or econometric applications, where
the model points represent physical phenomena or specific
events in financial markets.

VII. CONCLUSION

In this paper, we extended the nonparametric optimization
approaches in [27] from policy evaluation to policy learning
in continuous Markov Decision Problems. In particular, we re-
formulated the task of policy learning defined by the Bellman
optimality equation as a non-convex function-valued stochastic
program with nested expectations. We hypothesize that the
Bellman fixed point belongs to a reproducing Kernel Hilbert
Space, motivated by their efficient semi-parametric form. By
applying functional stochastic quasi-gradient method operating
in tandem with greedily constructed subspace projections,
we derived a new efficient variant of Q learning which is
guaranteed to converge almost surely in continuous spaces,
one of the first results of this type.

Unlike the policy evaluation setting, in policy learning we
are forced to confront fundamental limitations associated with
non-convexity and the explore-exploit tradeoff. To do so, we
adopt a hybrid policy learning situation in which some actions
are chosen greedily and some are chosen randomly. Through
careful tuning of the proportion of actions that are greedy
versus exploratory, we are able to design a variant of Q
learning which learns good policies on some benchmark tasks,
namely, the Continuous Mountain Car and the Inverted Pendu-
lum, with orders of magnitude fewer training examples than
existing approaches based on deep learning. Further, owing
to the kernel parameterization of our learned Q functions,
they are directly interpretable: the training points which are
most vital for representing the minimal Bellman error action-
value function are retained and automatically define its feature
representation.

REFERENCES

[1] R. Bellman, “The theory of dynamic programming,” DTIC Document,
Tech. Rep., 1954.

[2] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
p. 0278364913495721, 2013.

[3] D. P. Bertsekas and S. E. Shreve, Stochastic optimal control: The discrete
time case. Academic Press, 1978, vol. 23.

[4] M. Rásonyi, L. Stettner, et al., “On utility maximization in discrete-time
financial market models,” The Annals of Applied Probability, vol. 15,
no. 2, pp. 1367–1395, 2005.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 2018.

[6] K. Mitkovska-Trendova, R. Minovski, and D. Boshkovski, “Method-
ology for transition probabilities determination in a markov decision
processes model for quality-accuracy management,” Journal of Engi-
neering Management and Competitiveness (JEMC), vol. 4, no. 2, pp.
59–67, 2014.

[7] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[8] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[9] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, UK, May 1989.

[10] W. B. Powell and J. Ma, “A review of stochastic algorithms with
continuous value function approximation and some new approximate
policy iteration algorithms for multidimensional continuous applica-
tions,” Journal of Control Theory and Applications, vol. 9, no. 3, pp.
336–352, 2011.

[11] R. S. Sutton, H. R. Maei, and C. Szepesvári, “A convergent o(n)
temporal-difference algorithm for off-policy learning with linear function
approximation,” in Advances in neural information processing systems,
2009, pp. 1609–1616.

[12] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA:
Princeton University Press, 1957.

[13] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-
learning,” Machine Learning, vol. 16, no. 3, pp. 185–202, 1994.

[14] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of
stochastic iterative dynamic programming algorithms,” Neural compu-
tation, vol. 6, no. 6, pp. 1185–1201, 1994.

[15] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforcement
learning with function approximation,” in Proceedings of the 25th
international conference on Machine learning. ACM, 2008, pp. 664–
671.

[16] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and
C. Szepesvári, “Convergent temporal-difference learning with arbitrary
smooth function approximation,” in Advances in Neural Information
Processing Systems, 2009, pp. 1204–1212.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[18] G. Kimeldorf and G. Wahba, “Some results on tchebycheffian spline
functions,” Journal of mathematical analysis and applications, vol. 33,
no. 1, pp. 82–95, 1971.

[19] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized represen-
ter theorem,” in International Conference on Computational Learning
Theory. Springer, 2001, pp. 416–426.

[20] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in In Proceedings of the Twelfth International Confer-
ence on Machine Learning. Morgan Kaufmann, 1995, pp. 30–37.

[21] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE transactions on automatic
control, vol. 42, no. 5, pp. 674–690, 1997.

[22] N. K. Jong and P. Stone, “Model-based function approximation in
reinforcement learning,” in Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems. ACM, 2007,
p. 95.

[23] A. Shapiro, D. Dentcheva, et al., Lectures on stochastic programming:
modeling and theory. Siam, 2014, vol. 16.

[24] A. Korostelev, “Stochastic recurrent procedures: Local properties,”
Nauka: Moscow (in Russian), 1984.

[25] V. R. Konda and J. N. Tsitsiklis, “Convergence rate of linear two-time-
scale stochastic approximation,” Annals of applied probability, pp. 796–
819, 2004.

[26] Y. Ermoliev, “Stochastic quasigradient methods and their application to
system optimization,” Stochastics: An International Journal of Proba-
bility and Stochastic Processes, vol. 9, no. 1-2, pp. 1–36, 1983.

[27] A. Koppel, G. Warnell, E. Stump, P. Stone, and A. Ribeiro, “Breaking
bellman’s curse of dimensionality: Efficient kernel gradient temporal
difference,” arXiv preprint arXiv:1709.04221 (Submitted to IEEE TAC
Dec. 2017), 2017.

[28] D. Ormoneit and Ś. Sen, “Kernel-based reinforcement learning,” Ma-
chine learning, vol. 49, no. 2-3, pp. 161–178, 2002.

[29] S. Grünewälder, G. Lever, L. Baldassarre, M. Pontil, and A. Gretton,
“Modelling transition dynamics in mdps with rkhs embeddings,” in
Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, vol. 1, 2012, pp. 535–542.

[30] A.-m. Farahmand, C. Ghavamzadeh, Mohammadand Szepesvári, and
S. Mannor, “Regularized policy iteration with nonparametric function
spaces,” Journal of Machine Learning Research, vol. 17, no. 139, pp.
1–66, 2016.

[31] B. Dai, N. He, Y. Pan, B. Boots, and L. Song, “Learning from
conditional distributions via dual kernel embeddings,” arXiv preprint
arXiv:1607.04579, 2016.

[32] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on signal processing, vol. 41, no. 12,
pp. 3397–3415, 1993.

[33] G. Lever, J. Shawe-Taylor, R. Stafford, and C. Szepesvari, “Compressed
conditional mean embeddings for model-based reinforcement learning,”
in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[34] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsimonious Online
Learning with Kernels via Sparse Projections in Function Space,” ArXiv
e-prints, Dec. 2016.

[35] E. J. Candes, “The restricted isometry property and its implications for
compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9,
pp. 589–592, 2008.

[36] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” in Advances in neural information processing systems, 2002,
pp. 785–792.

[37] M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient
descent: algorithms for minimizing compositions of expected-value
functions,” Mathematical Programming, vol. 161, no. 1-2, pp. 419–449,
2017.

[38] A. W. Moore, “Efficient memory-based learning for robot control,”
University of Cambridge, Computer Laboratory, Tech. Rep. UCAM-
CL-TR-209, Nov. 1990. [Online]. Available: http://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-209.pdf

[39] K. Yoshida, “Swing-up control of an inverted pendulum by energy-based
methods,” in American Control Conference, 1999. Proceedings of the
1999, vol. 6. IEEE, 1999, pp. 4045–4047.

[40] V. Norkin and M. Keyzer, “On stochastic optimization and statistical
learning in reproducing kernel hilbert spaces by support vector machines
(svm),” Informatica, vol. 20, no. 2, pp. 273–292, 2009.

[41] A. Argyriou, C. A. Micchelli, and M. Pontil, “When is there a repre-
senter theorem? vector versus matrix regularizers,” Journal of Machine
Learning Research, vol. 10, no. Nov, pp. 2507–2529, 2009.

[42] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathe-
matical programming, vol. 103, no. 1, pp. 127–152, 2005.

[43] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” Journal of
Machine Learning Research, vol. 7, no. Dec, pp. 2651–2667, 2006.

[44] V. S. Borkar, “Stochastic approximation with two time scales,” Systems
& Control Letters, vol. 29, no. 5, pp. 291–294, 1997.

[45] M. Wang and D. P. Bertsekas, “Incremental constraint projection-
proximal methods for nonsmooth convex optimization,” SIAM Journal
on Optimization (to appear), 2014.

[46] P. Vincent and Y. Bengio, “Kernel matching pursuit,” Machine Learning,
vol. 48, no. 1, pp. 165–187, 2002.

[47] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari, “Convergence
results for single-step on-policy reinforcement-learning algorithms,”
Machine learning, vol. 38, no. 3, pp. 287–308, 2000.

[48] E. Aarts and J. Korst, “Simulated annealing and boltzmann machines,”
1988.

[49] M. Carreira-Perpinan and C. Williams, “On the number of modes
of a gaussian mixture,” in Scale Space Methods in Computer Vision.
Springer, 2003, pp. 625–640.

[50] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[51] Openai gym - continuous mountain car. [Online]. Available: https:
//gym.openai.com/envs/MountainCarContinuous-v0/

[52] D. P. Bertsekas and S. Shreve, Stochastic optimal control: the discrete-
time case, 2004.

[53] W. Rudin, Principles of mathematical analysis, 3rd ed. New York:
McGraw-Hill Book Co., 1976, international Series in Pure and Applied
Mathematics.

Alec Koppel began as a Research Scientist at
the U.S. Army Research Laboratory in the Com-
putational and Information Sciences Directorate in
September of 2017. He completed his Master’s de-
gree in Statistics and Doctorate in Electrical and
Systems Engineering, both at the University of Penn-
sylvania (Penn) in August of 2017. He is also a par-
ticipant in the Science, Mathematics, and Research
for Transformation (SMART) Scholarship Program
sponsored by the American Society of Engineering
Education. Before coming to Penn, he completed his

Master’s degree in Systems Science and Mathematics and Bachelor’s Degree
in Mathematics, both at Washington University in St. Louis (WashU), Mis-
souri. His research interests are in the areas of signal processing, optimization
and learning theory. His current work focuses on optimization and learning
methods for streaming data applications, with an emphasis on problems arising
in autonomous systems. He co-authored a paper selected as a Best Paper
Finalist at the 2017 IEEE Asilomar Conference on Signals, Systems, and
Computers.

Ekaterina Tolstaya is a doctoral student in the
Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA, and
a National Science Foundation Graduate Research
Fellow. She received B.Sc. degrees in Electrical
Engineering and Computer Science from Univer-
sity of Maryland, College Park, MD, in 2016,
and the M.S.E. degree in Robotics from University
of Pennsylvania, Philadelphia, PA, in 2017. Her
research interests include reinforcement learning,
aerial robotics, and multi-agent systems.

Ethan A. Stump received the B.S. degree from the
Arizona State University, Tempe, and the M.S. and
PhD degrees from the University of Pennsylvania,
Philadelphia, all in mechanical engineering. He is
a researcher within the U.S. Army Research Lab-
oratory’s Computational and Information Sciences
Directorate, where he has worked on developing
mapping and navigation technologies to enable base-
line autonomous capabilities for teams of ground
robots and on developing controller synthesis for
managing the deployment of multi-robot teams to

perform repeating tasks such as persistent surveillance by tying them formal
task specifications.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf
https://gym.openai.com/envs/MountainCarContinuous-v0/
https://gym.openai.com/envs/MountainCarContinuous-v0/

Alejandro Ribeiro received the B.Sc. degree in
electrical engineering from the Universidad de la
Republica Oriental del Uruguay, Montevideo, in
1998 and the M.Sc. and Ph.D. degree in electrical
engineering from the Department of Electrical and
Computer Engineering, the University of Minnesota,
Minneapolis in 2005 and 2007. From 1998 to 2003,
he was a member of the technical staff at Bell-
south Montevideo. After his M.Sc. and Ph.D studies,
in 2008 he joined the University of Pennsylva-
nia (Penn), Philadelphia, where he is currently the

Rosenbluth Associate Professor at the Department of Electrical and Systems
Engineering. His research interests are in the applications of statistical signal
processing to the study of networks and networked phenomena. His current
research focuses on wireless networks, network optimization, learning in
networks, networked control, robot teams, and structured representations of
networked data structures. Dr. Ribeiro received the 2012 S. Reid Warren,
Jr. Award presented by Penn’s undergraduate student body for outstanding
teaching, the NSF CAREER Award in 2010, and student paper awards at
the 2013 American Control Conference (as adviser), as well as the 2005 and
2006 International Conferences on Acoustics, Speech and Signal Processing.
Dr. Ribeiro is a Fulbright scholar and a Penn Fellow.

VIII. APPENDICES

Appendix A: Proof of Auxiliary Results

We turn to establishing some technical results which are
necessary precursors to the proofs of the main stability results.

Proposition 1 Given independent identical realizations
(st ,at ,s′t) of the random triple (s,a,s′), the difference between
the projected stochastic functional quasi-gradient and the
stochastic functional quasi-gradient of the instantaneous cost
is bounded for all t as

‖∇̃QJ(Qt ,zt+1;st,at,s′t)−∇̂QJ(Qt ,zt+1;st,at,s′t)‖H≤
εt

αt
(41)

Where αt > 0 denotes the algorithm step size and εt > 0 is the
compression budget parameter of the KOMP algorithm.

Proof : As in Proposition 1 of [27], Consider the
square-Hilbert norm difference of ∇̃QJ(Qt ,zt+1;st ,at ,s′t) and
∇̂QJ(Qt ,zt+1;st ,at ,s′t) defined by (27) and (28)

‖∇̃QJ(Qt ,zt+1;st ,at ,s′t)− ∇̂QJ(Qt ,zt+1;st ,at ,s′t)‖H =

‖(Qt −PHDt+1
[Qt −αt∇̂QJ(Qt ,zt+1;st ,at ,s′t)])/αt

− ∇̂QJ(Qt ,zt+1;st ,at ,s′t)‖2
H (42)

Multiply and divide ∇̂QJ(Qt ,zt+1;st ,at ,s′t) by αt and reorder
terms to write

‖ (Qt −αt∇̂QJ(Qt ,zt+1;st ,at ,s′t))
αt

−
(PHDt+1

[Qt −αt∇̂QJ(Qt ,zt+1;st ,at ,s′t)])
αt

‖2
H

=
1

α2
t
‖(Qt −αt∇̂QJ(Qt ,zt+1;st ,at ,s′t))

− (PHDt+1
[Qt −αt∇̂QJ(Qt ,zt+1;st ,at ,s′t)])‖2

H

=
1

α2
t
‖Q̃t+1−Qt+1‖2

H ≤
ε2

t

α2
t

(43)

where we have pulled the nonnegative scalar αt outside of the
norm on the second line and substituted the definition of Q̃t+1

and Qt+1. We also apply the KOMP residual stopping criterion
from Algorithm 2, ‖Q̃t+1−Qt+1‖ ≤ εt to yield (41).

Lemma 1 Denote the filtration Ft as the time-dependent
sigma-algebra containing the algorithm history ({Qu,zu}t

u=0∪
{su,au,s′u}t−1

u=0) ⊂ Ft . Let Assumptions 1-3 hold true and
consider the sequence of iterates defined by Algorithm 1. Then:

i. The conditional expectation of the Hilbert-norm difference
of action-value functions at the next and current iteration
satisfies the relationship

E[‖Qt+1−Qt‖2
H|Ft]≤2α

2
t (G

2
δ

G2
Q+λD2)+2ε

2
t (44)

ii. The auxiliary sequence zt with respect to the conditional
expectation of the temporal action difference δ̄t (defined
in Assumption 2) satisfies

E[(zt+1− δ̄t)
2 |Ft]≤ (1−βt)(zt − δ̄t−1)

2 (45)

+
LQ

βt
‖Qt−Qt−1‖2

H+2β
2
t σ

2
δ

iii. Algorithm 1 generates a sequence of Q-functions that
satisfy the stochastic descent property with respect to the
Bellman error J(Q) [cf. (12)]:

E[J(Qt+1)
∣∣Ft]≤ J(Qt)−αt

(
1−

αtG2
Q

βt

)
‖∇QJ(Q)‖2

+
βt

2
E[(δ̄t − zt+1)

2 | Ft]+
LQσ2

Qα2
t

2
+ εt‖∇QJ(Qt)‖H , (46)

Proof : Lemma 1(i) Consider the Hilbert-norm difference of
action-value functions at the next and current iteration and use
the definition of Qt+1

‖Qt+1−Qt‖2
H=α

2
t ‖∇̃QJ(Qt ,zt+1;(st ,at),(s′t,a

′
t)‖2

H (47)

We add and subtract the functional stochastic quasi-gradient
∇̂QJ(Qt ,zt+1;(st ,at),(s′t ,a′t) from (47) and apply the triangle
inequality (a+b)2 ≤ 2a2 +2b2 which holds for any a,b > 0.

‖Qt+1−Qt‖2
H ≤ 2α

2
t ‖∇̂QJ(Qt ,zt+1;(st ,at),(s′t ,a

′
t)‖2

H

+2α
2
t ‖∇̂QJ(Qt ,zt+1;(st ,at),(s′t ,a

′
t)

−∇̃QJ(Qt ,zt+1;(st,at),(s′t,a
′
t)‖2

H (48)

Now, we may apply Proposition 1 to the second term. Doing
so and computing the expectation conditional on the filtration
Ft yields

E[‖Qt+1−Qt‖2
H] | F] (49)

= 2α
2
t E[‖∇̂QJ(Qt ,zt+1;(st ,at),(s′t ,a

′
t)‖2

H | Ft]+2ε
2
t

Using the Cauchy-Schwarz inequality together with the Law
of Total Expectation and the definition of the functional
stochastic quasi-gradient to upper estimate the first term on
the right-hand side of (49) as

E[‖Qt+1−Qt‖2
H | Ft] (50)

≤ 2α
2
t E{‖γκ((s′t ,a

′
t), ·)−κ((st ,at),·)‖2

H

×E[z2
t+1 | st ,at] | Ft}+2α

2
tλ‖Qt‖2

H+2ε
2
t

Now, use the fact that zt+1 has a finite second conditional
moment [cf. (31)], yielding

E[‖Qt+1−Qt‖2
H | Ft]

≤ 2α
2
t G2

δ
E[‖γκ((s′t ,a

′
t), ·)−κ((st ,at), ·)‖2

H | Ft]

+2α
2
t λ‖Qt‖2

H+2ε
2
t (51)

From here, we may use the fact that the functional gradient
of the temporal action-difference γκ((s′t ,a′t), ·)− κ((st ,at), ·)
has a finite second conditional moment (31) and that the Q
function sequence is bounded (36) to write:

E[‖Qt+1−Qt‖2
H | Ft]≤ 2α

2
t (G

2
δ

G2
V +λ

2D2)+2ε
2
t (52)

which is as stated in Lemma 1(i).

Proof : Lemma 1(ii) Begin by defining the scalar quantity et
as the difference of mean temporal-action differences scaled
by the forgetting factor βt , i.e. et = (1−βt)(δ̄t − δ̄t−1). Then,
we consider the difference of the evolution of the auxiliary
variable zt+1 with respect to the conditional mean temporal
action difference δ̄t , plus the difference of the mean temporal
differences:

zt+1− δ̄t + et =(1−βt)zt +βtδt − [(1−βt)δ̄t +βt δ̄t]

+ (1−βt)(δ̄t − δ̄t−1) (53)

where we make use of the definition of zt+1, the fact that
δ̄t = {(1−βt)δ̄t +βt δ̄t} and the definition of et on the right-
hand side of (53). Observe that the result then simplifies to
zt+1 − δ̄t + et = (1− βt)zt + βt(δ̄t − δ̄t−1) by grouping like
terms and canceling the redundant δ̄t . Squaring (53), using
this simplification, yields

(zt+1−δ̄t + et)
2

= (1−βt)
2(zt − δ̄t−1)

2 +β
2
t (δt − δ̄t)

2

+2(1−βt)βt(zt − δ̄t−1)(δt − δ̄t) (54)

Now, we compute the expectation conditioned on the algo-
rithm history Ft to write

E[(zt+1− δ̄t + et)
2 | Ft]

=(1−βt)
2(zt − δ̄t−1)

2 +β
2
t E[(δt − δ̄t)

2 | Ft]

+2(1−βt)βt(zt − δ̄t−1)E[(δt − δ̄t) | Ft] (55)

We apply the assumption that the temporal action difference
δt is an unbiased estimator for its conditional mean δ̄t with
finite variance (Assumption 2) to write

E[(zt+1−δ̄t+et)
∣∣Ft]=(1−βt)

2(zt−δ̄t−1)
2+β

2
t σ

2
δ

(56)

We obtain an upper estimate on the conditional mean square
of zt+1− δ̄t by using the inequality ‖a+b‖2 ≤ (1+ρ)‖a‖2 +
(1+1ρ)‖b‖2 which holds for any ρ > 0: set a = zt+1− δ̄t +et ,
b =−et , ρ = βt to write

(zt+1−δ̄t)
2≤(1+βt)(zt+1−δ̄t+et)

2+

(
1+

1
βt

)
e2

t (57)

Observe that (57) provides an upper-estimate of the square
sub-optimality (zt+1 − δ̄t)

2 in terms of the squared error
sequence (zt+1− δ̄t +et)

2. Therefore, we can compute the
expectation of (57) conditional on Ft and substitute (56) for

the terms involving the error sequence (zt+1−δ̄t+et)
2, which

results in gaining a factor of (1+βt) on the right-hand side.
Collecting terms yields

E[(zt+1− δ̄t)
2 | Ft] (58)

= (1+βt)[(1−βt)
2(zt−δ̄t−1)

2 +β
2
t σ

2
δ
]+

(
1+βt

βt

)
e2

t

Using the fact that (1−β 2
t)(1−βt)≤ (1−βt) for the first term

and (1−βt)β
2
t ≤ 2β 2

t for the second to simplify

E[(zt+1− δ̄t)
2 | Ft] =(1−βt)(zt − δ̄t−1)

2 +2β
2
t σ

2
δ

+

(
1+βt

βt

)
e2

t (59)

We can bound the term involving et , which represents the
difference of mean temporal differences. By definition, we
have |et |= (1−βt)|(δ̄t − δ̄t−1)|:

(1−βt)|(δ̄t−δ̄t−1)|≤(1−βt)LQ‖Qt−Qt−1‖H , (60)

where we apply the Lipschitz continuity of the temporal
difference with respect to the action-value function [cf. (35)].
Substitute the right-hand side of (60) and simplify the expres-
sion in the last term as (1−β 2

t)/βt ≤ 1/βt to conclude (46).

Proof : Lemma 1(iii) Following the proof of Theorem 4
of [37], we begin by considering the Taylor expansion of
J(Q) and applying the fact that it has Lipschitz continuous
functional gradients to upper-bound the second-order terms.
Doing so yields the quadratic upper bound:

J(Qt+1)≤ J(Qt)+ 〈∇J(Qt),Qt+1−Qt〉H
+

LQ

2
‖Qt+1−Qt‖2

H . (61)

Substitute the fact that the difference between consecutive
action-value functions is the projected quasi-stochastic gra-
dient Qt+1−Qt =−αt∇̃QJ(Qt ,zt+1;st ,at ,s′t) (29) into (61) .

J(Qt+1)≤J(Qt)−αt〈∇J(Qt), ∇̃QJ(Qt ,zt+1;st ,at ,s′t)〉H

+
LQα2

t

2
‖∇̃QJ(Qt ,zt+1;st ,at ,s′t)‖2

H . (62)

Subsequently, we use the short-hand notation ∇̂QJ(Qt) :=
∇̂QJ(Qt ,zt+1;st ,at ,s′t) and ∇̃QJ(Qt) := ∇̃QJ(Qt ,zt+1;st ,at ,s′t)
for the stochastic and projected stochastic quasi-gradients, (27)
and (28), respectively. Now add and subtract the inner-product
of the functional gradient of J with the stochastic gradient,
scaled by the step-size αt〈∇J(Qt), ∇̂QJ(Qt ,zt+1;st ,at ,s′t)〉H,
and αt‖∇QJ(Qt)‖2 into above expression and gather terms.

J(Qt+1)≤J(Qt)−αt‖∇QJ(Q)‖2+
LQα2

t

2
‖∇̃QJ(Qt)‖2

H (63)

−αt〈∇J(Qt),∇̃QJ(Qt)−∇̂QJ(Qt)〉H
+αt〈∇J(Qt),∇J(Qt)− ∇̂QJ(Qt)〉H

Observe that the last two terms on the right-hand side of
(63) are terms associated with the directional error between
the true gradient and the stochastic quasi-gradient, as well
as the stochastic quasi-gradient with respect to the projected
stochastic quasi-gradient. The former term may be addressed

through the error bound derived from the KOMP stopping
criterion in Proposition 1, whereas the later may be analyzed
through the Law of Total Expectation and Assumptions 2 - 3.

We proceed to address the second term on the right-hand
side of (63) by applying Cauchy-Schwarz to write

|−αt〈∇J(Qt),∇̃QJ(Qt)−∇̂QJ(Qt)〉H|
≤ αt‖∇J(Qt)‖H‖∇̃QJ(Qt)−∇̂QJ(Qt)‖H (64)

Now, apply Proposition 1 to ‖∇̃QJ(Qt)−∇̂QJ(Qt)‖H, the
Hilbert-norm error induced by sparse projections on the right-
hand side of (64) and cancel the factor of αt :

αt〈∇J(Qt),∇̃QJ(Qt)−∇̂QJ(Qt)〉H ≤ εt‖∇J(Qt)‖H (65)

Next, we address the last term on the right-hand side of (63).
To do so, we will exploit Assumptions 2 - 3 and the Law of
Total Expectation. First, consider the expectation of this term,
ignoring the multiplicative step-size factor, while applying
(32):

E
[
∇J(Qt),∇QJ(Qt)− ∇̂QJ(Qt)〉H

∣∣Ft
]

(66)

=
〈
∇QJ(Qt),E[(γκ((s′t ,a

′
t),·)−κ((st ,at),·))(δ̄t−zt+1)

∣∣Ft]
〉
H

In (66), we pull the expectation inside the inner-product, using
the fact that ∇QJ(Q) is deterministic. Note on the right-hand
side of (66), by using (32), we have δ̄t inside the expectation
in the above expression rather than a realization δt . Now, apply
Cauchy-Schwartz to the above expression to obtain〈

∇QJ(Qt),E[(γκ((s′t ,a
′
t),·)−κ((st ,at),·))(δ̄t−zt+1)

∣∣Ft]
〉
H

≤ ‖∇QJ(Qt)‖HE[‖(γκ((s′t ,a
′
t),·)−κ((st ,at),·))‖H

×|δ̄t−zt+1|
∣∣Ft] (67)

From here, apply the inequality ab ≤ ρ

2 a2 + 1
2ρ

b2 for ρ > 0
with a = |δ̄t − zt+1|, and b = αt‖∇QJ(Qt)‖‖γκ((s′t ,a′t), ·)−
κ((st ,at), ·)‖H, and ρ = βt to the preceding expression:

‖∇QJ(Qt)‖HE[‖(γκ((s′t ,a
′
t),·)−κ((st ,at),·))‖H|δ̄t−zt+1|

∣∣Ft]
〉
H

≤ βt

2
E[(δ̄t − zt+1)

2 | Ft]

+
α2

t

2βt
‖∇J(Qt)‖2

HE[‖γκ((s′t ,a
′
t), ·)−κ((st ,at), ·)‖2

H
∣∣Ft] (68)

To (68), we apply Assumption 3 regarding the finite second
conditional of the difference of reproducing kernel maps (33)
to the second term, which when substituted into the right-hand
side of the expectation of (63) conditional on Ft , yields

E[J(Qt+1)
∣∣Ft]≤ J(Qt)−αt

(
1−

αtG2
Q

βt

)
‖∇QJ(Q)‖2

+
βt

2
E[(δ̄t − zt+1)

2 | Ft]+
LQσ2

Qα2
t

2
+ εt‖∇QJ(Qt)‖H , (69)

where we have also applied the fact that the projected stochas-
tic quasi-gradient has finite conditional variance (34) and
gathered like terms to conclude (46).

Lemma 1 is may be seen as a nonparametric extension of
Lemma 2 and A.1 of [37], or an extension of Lemma 6 in [27]
to the non-convex case. Now, we may use Lemma 1 to connect
the function sequence generated by Algorithm 1 to a special
type of stochastic process called a coupled supermartingale,
and therefore prove that Qt converges to a stationary point
of the Bellman error with probability 1. To the best of our
knowledge, this is a one of a kind result.

Appendix B: Proof of Theorem 1
We use the relations established in Lemma 1 to construct

a coupled supermatingale of the form 2. First, we state
the following lemma regarding coupled sequences of con-
ditionally decreasing stochastic processes called the coupled
supermartingale lemma, stated as:

Lemma 2 (Coupled Supermartingale Theorem) [52], [37].
Let {ξtt}, {ζt}, {ut}, {ūt}, {ηt}, {θt}, {εt}, {µt}, {νt} be
sequences of nonnegative random variables such that

E{ξt+1 | Gt} ≤ (1+ηt)ξt −ut + cθtζt +µt ,

E{ζt+1 | Gt} ≤ (1−θt)ζt − ūt + εtξt +νt (70)

where Gt = {ξs,ξs,us, ūs,ηs,θs,εs,µs,νs}t
s=0 is the filtration

and c > 0 is a scalar. Suppose the following summability
conditions hold almost surely:

∞

∑
t=0

ηt < ∞ ,
∞

∑
t=0

εt < ∞ ,
∞

∑
t=0

µt < ∞ ,
∞

∑
t=0

νt < ∞ (71)

Then ξt and ζt converge almost surely to two respective
nonnegative random variables, and we may conclude that
almost surely

∞

∑
t=0

ut < ∞ ,
∞

∑
t=0

ūt < ∞ ,
∞

∑
t=0

θtζt < ∞ (72)

We construct coupled supermartingales that match the form
of Lemma 2 using Lemma 1. First, use Lemma 1(ii)(45) as
an upper bound on Lemma 1(iii) (46).

E[J(Qt+1)
∣∣Ft]≤ J(Qt)−αt

(
1−

αtG2
Q

βt

)
‖∇QJ(Qt)‖2

+
βt

2
((1−βt)(zt − δ̄t−1)

2 +
LQ

βt
‖Qt −Qt−1‖2

H

+2β
2
t σ

2
δ
)+

LQσ2
Qα2

t

2
+ εt‖∇QJ(Qt)‖H (73)

We introduce three restrictions on the learning rate, expecta-
tion rate, and parsimony constant in order to simplify (73).
First, we assume that βt ∈ (0,1) for all t. Next, we choose

εt = α2
t . Lastly, we restrict 1− αt G2

Q
βt

> 0, which results in the
condition: αt

βt
< 1

G2
Q

. Then, we simplify and group terms of

(73).

E[J(Qt+1)
∣∣Ft]≤J(Qt)−αt‖∇QJ(Qt)‖2 (74)

+
βt

2
(zt − δ̄t−1)

2 +
LQ

2
‖Qt −Qt−1‖2

H

+β
3
t σ

2
δ
+α

2
t

(
LQσ2

Q

2
+‖∇QJ(Qt)‖H

)

Next, we aim to connect the result of (73) to the form of
Lemma 2 via the identifications:

ξt = J(Qt) ,ζt = (zt − δ̄t−1)
2 ,θt = βt ,c = 1/2 (75)

ut = αt‖∇QJ(Qt)‖2,ηt = 0

µt =
LQ

2
‖Qt−Qt−1‖2

H+β
3
t σ

2
δ
+α

2
t

(
LQσ2

Q

2
+‖∇QJ(Qt)‖H

)
Observe that ∑ µt <∞ due to the upper bound on ‖Qt−Qt−1‖2

H
provided by Lemma 1(44) and the summability conditions for
α2

t and β 2
t (37).

Next, we identify terms in Lemma 1 (ii) (45) according to
Lemma 2 in addition to (75).

νt =
LQ

βt
‖Qt−Qt−1‖2

H+2β
2
t σ

2
δ
,εt = 0 , ūt = 0 (76)

The summability of νt can be shown as follows: the expression
‖Qt − Qt−1‖2

H/βt which is order O(α2
t /βt) in conditional

expectation by Lemma 1(i). Sum the resulting conditional
expectation for all t, which by the summability of the sequence
∑t α2

t /βt < ∞ is finite. Therefore, ∑t ‖Qt −Qt−1‖2
H/βt < ∞

almost surely. We also require ∑t β 2
t < ∞ (37) for the summa-

bility of the second term of (76)
Together with the conditions on the step-size sequences αt

and βt , the summability conditions of Lemma 2 are satisfied,
which allows to conclude that ξt = J(Qt) and ζt = (zt− δ̄t−1)

2

converge to two nonnegative random variables w.p. 1, and that

∑
t

αt‖∇QJ(Qt)‖2 < ∞, ∑
t

βt(zt − δ̄t−1)
2 < ∞ (77)

almost surely. Then, the summability of ut taken together with
non-summability of αt and βt (37) indicates that the limit
infimum of the norm of the gradient of the cost goes to null.

liminf
t→∞

‖∇QJ(Qt)‖= 0 , liminf
t→∞

(zt − δ̄t−1)
2 = 0 (78)

almost surely. From here, given liminft→∞ ‖∇QJ(Qt)‖H = 0,
we can apply almost the exact same argument by contradiction
as [37] to conclude that the whole sequence ‖∇QJ(Qt)‖H
converges to null with probability 1, which is repeated here
for completeness.

Consider some η > 0 and observe that ‖∇QJ(Qt)‖H ≤ η

for infinitely many t. Otherwise, there exists t0 such that
∑

∞
t=0 ‖αt∇QJ(Qt)‖2

H ≥∑
∞
t=t0 αtη

2 = ∞ which contradicts (77).
Therefore, there exists a closed set H̄ ⊂ H such that {Qt}
visits H̄ infinitely often, and

‖∇QJ(Q)‖H
{
≤ η for Q ∈ H̄
> η for Q 6∈ H̄,Q ∈ {Qt}

(79)

Suppose to the contrary that there exists a limit point Q̃ such
that ‖∇QJ(Q̃)‖H > 2η . Then there exists a closed set H̃, i.e.,
a union of neighborhoods of all Qt ’s such that ‖∇QJ(Qt)‖H >
2η , with {Qt} visiting H̃ infinitely often, and

‖∇QJ(Q)‖H
{
≥ 2η for Q ∈ H̃
< 2η for Q 6∈ H̃,Q ∈ {Qt}

(80)

Using the continuity of ∇J and η > 0, we have that H̄ and
H̃ are disjoint: dist(H̄,H̃) > 0. Since {Qt} enters both H̄

and H̃ infinitely often, there exists a subsequence {Qt}t∈T =
{{Qt} ji−1

t=ki
} (with T ⊂ Z+) that enters H̄ and H̃ infinitely

often, with Qki ∈ H̄ and Q ji ∈ H̃ for all i. Therefore, for all i,
we have

‖∇QJ(Qki)‖H ≥ 2η > ‖∇QJ(Qt)‖H (81)
> η ≥ ‖∇QJ(Q ji)‖H for t = ki +1, . . . , ji−1

Therefore, we can write

∑
t∈T
‖Qt+1−Qt‖H =

∞

∑
i=1

ji−1

∑
t=ki

‖Qt+1−Qt‖H (82)

≥
∞

∑
i=1
‖Qki −Q ji‖H ≥ dist(H̄,H̃) = ∞

However, we may also write that

∞ >
∞

∑
t=0

αt‖∇J(Qt)‖2
H ≥ ∑

t∈T
αt‖∇J(Qt)‖2

H > η
2
∑

t∈T
αt (83)

Then, using the fact that the sets X and A are com-
pact, there exist some M > 0 such that ‖Qt+1 − Qt‖H ≤
αt‖∇̃QJ(Qt ,zt+1;st ,at ,s′t)‖H ≤ Mαt for all t, using the fact
that εt = α2

t . Therefore,

∑
t∈T
‖Qt+1−Qt‖H ≤M ∑

t∈T
αt < ∞ (84)

which contradicts (82). Therefore, there does not exist any
limit point Q̃ such that ‖∇QJ(Q̃)‖H > 2η . By making η

arbitrarily small, it means that there does not exist any limit
point that is nonstationary. Moreover, we note that the set
of such sample paths occurs with probability 1, since the
preceding analysis applies to all sample paths which satisfy
(77). Thus, any limit point of Qt is a stationary point of J(Q)
almost surely. �

Appendix C: Proof of Theorem 2

Begin with the expression in (46), and substitute in constant
step-size selections with ε = Cα2 and (1 − β) ≤ 1, and
compute the total expectation (Ft = F0) to write

E[J(Qt+1)]≤ E[J(Qt)]−α

(
1−

αG2
Q

β

)
E[‖∇QJ(Q)‖2]

+Cα
2E[‖∇QJ(Qt)‖H]+

β

2
E[(zt+1− δ̄t)

2]

+
LQσ2

Qα2

2
, (85)

From here, we note that the sequence E[(zt+1 − δ̄t)
2] is

identical (except re-written in terms of Q-functions rather than
value functions) to the sequence in Lemma 1(iii) of [27], and
therefore, analogous reasoning regarding to that which yields
eqn. (86) in Appendix D of [27] allows us to write

E[(zt+1−δ̄t)
2]≤ 2LQ

β 2

[
α

2(G2
δ

G2
Q+λ

2D2]+2βσ
2
δ
, (86)

which follows from applying (44) to the Hilbert-norm dif-
ference of Q-functions term and recursively substituting the
total expectation of (45) back into itself, and simplifying the

resulting geometric sum. Now, we may substitute the right-
hand side of (86) into the third term on the right-hand side of
(85) to obtain

E[J(Qt+1)]≤ E[J(Qt)]−α

(
1−

αG2
Q

β

)
E[‖∇QJ(Q)‖2]

+Cα
2E[‖∇QJ(Qt)‖H]+

2LQ

β

[
α

2(G2
δ

G2
Q+λ

2D2]
+2β

2
σ

2
δ
+

LQσ2
Qα2

2
, (87)

The rest of the proof proceeds as follows: we break the right-
hand side of (87) into two subsequences, one in which the ex-
pected norm of the cost functional’s gradient E[‖∇QJ(Qt)‖H]
is below a specified threshold, whereby J(Qt) is a decreas-
ing sequence in expectation, and one where this condition
is violated. We can use this threshold condition to define
a deterministically decreasing auxiliary sequence to which
the Monotone Convergence Theorem applies, and hence we
obtain convergence of the auxiliary sequence. Consequently,
we obtain convergence in infimum of the expected value of
J(Qt) to a neighborhood.

We proceed by defining the conditions under which E[J(Qt)]
is decreasing, i.e.,

E[J(Qt+1)]≤ E[J(Qt)]−α

(
1−

αG2
Q

β

)
E[‖∇QJ(Q)‖2]

+Cα
2E[‖∇QJ(Qt)‖H]+

2LQ

β

[
α

2(G2
δ

G2
Q+λ

2D2]
+2β

2
σ

2
δ
+

LQσ2
Qα2

2
≤ E[J(Qt)] (88)

Note that (88) holds whenever the following is true:

−α

(
1−

αG2
Q

β

)
E[‖∇QJ(Q)‖2]+Cα

2E[‖∇QJ(Qt)‖H] (89)

+
2LQ

β

[
α

2(G2
δ

G2
Q+λ

2D2]+2β
2
σ

2
δ
+

LQσ2
Qα2

2
≤ 0

Observe that the left-hand side of (89) defines a quadratic
function of E[‖∇QJ(Qt)‖H] which opens downward. We can
solve for the condition under which (89) holds with equality
by obtaining the positive root (since E[‖∇QJ(Qt)‖H] ≥ 0) of
this expression through the quadratic formula:

E[‖∇QJ(Q)‖]=
(
C+

[
C2+4

(
1
α
−

G2
Q

β

)[2LQ

β

[
(G2

δ
G2

Q+λ
2D2)

]
+

2β 2σ2
δ

α2 +
LQσ2

Q

2

]]1/2)(
1
α
−

G2
Q

β

)−1

(90)

=O
(

αβ

β −α

[
1+

√
1+

β −α

αβ

(
1
β
+

β 2

α2

)])

where we have cancelled out a common factor of α2 as well as
common factors of −1 throughout. Now, define the right-hand

side of (90) as a constant ∆, and the auxiliary sequence

Γt = E[J(Qt)]1
{

min
u≤t
−α

(
1−

αG2
Q

β

)
E[‖∇QJ(Q)‖2] (91)

+Cα
2E[‖∇QJ(Qt)‖H]+

2LQ

β

[
α

2(G2
δ

G2
Q

+λ
2D2]+2β

2
σ

2
δ
+

LQσ2
Qα2

2
> ∆

}
where 1{E} denotes the indicator function of a (deterministic)
event E. From here, we note that Γt is nonnegative since
J(Qt) ≥ 0. Moreover, Γt is decreasing: either the indicator
is positive, in which case its argument is true, and hence
(89) holds with equality. When (89) holds with equality, the
objective is decreasing, namely, (88) is valid. Alternatively,
condition inside the indicator is null, which, due to the use of
the minimum in the definition (91), means that the indicator
is null for all subsequent times. Therefore, in either case, Γt is
nonnegative and decreasing, and therefore we may apply the
Monotone Convergence Theorem [53] to conclude Γt → 0.
Therefore, we have either that limt E[J(Qt)]−∆ = 0 or that
the indicator in (91) is null for t → ∞. Taken together, these
statements allow us to conclude

liminf
t→∞

E[J(Qt)]≤O
(

αβ

β −α

[
1+

√
1+

β −α

αβ

(
1
β
+

β 2

α2

)])
(92)

which is as stated in (38). �

	Introduction
	Markov Decision Processes
	Stochastic Quasi-Gradient Method
	Convergence Analysis
	Practical Considerations
	Experiments
	Conclusion
	References
	Biographies
	Alec Koppel
	Ekaterina Tolstaya
	Ethan A. Stump
	Alejandro Ribeiro

	Appendices

