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Reinforcement Learning

I In Markov Decision problems, the goal is to find the action sequence that
maximizes the accumulated rewards at a given start state [Bel54]

V (s, {at}∞t=0) := Es′[
∞∑

t=0

γtr (st,at,s′t) | s0 = s, {at}∞t=0] (1)

I Action-value function, the accumulation of rewards given initial s,a

Q(s,a, {at}∞t=1) :=Es′

[ ∞∑
t=0

γtr (st,at,s′t) | s0 = s,a0 = a, {at}∞t=1

]

I Advantage Function, where maxa A(s,a) = 0 [Bai94]

Q(s,a) = V (s) + A(s,a) (2)
I Parameterizing the advantage function as a quadratic function yields

computational savings [GLSL16]

A(s,a) = −1
2

(a− π(s))LT (s)L(s)(a− π(s)) (3)

Model to learn:
I V (s) - value of state s
I π(s) - policy at state s
I L(s) - slope at s

Illustration via Wikimedia

Optimizing the Bellman Error

I Bellman optimality equation [BS04]:

Q∗(s,a) = Es′[r (s,a,s′) + γmax
a′

Q(s′,a′)] (4)

I To find the optimal policy, we seek to satisfy (4) for all state-action pairs,
yielding the cost functional:

J(V , π,L) = Es,a(y(s,a)−Q(s,a))2, (5)

where y(s,a) = Es′[r (s,a,s′) + γV (s′)].
I Finding the Bellman fixed point reduces to the stochastic program:

V ∗,L∗, π∗ = arg min
V ,π,L∈B(S)

J(V , π,L) . (6)

Reproducing Kernel Hilbert Spaces

I We restrict B(S) to be a reproducing Kernel Hilbert space (RKHS) H to
which V , π and L belong [KTSR17].

I An RKHS over S is a Hilbert space is equipped with a reproducing kernel,
an inner product-like map κ : S × S → R [NK09, AMP09]:

(i)〈π, κ(s, ·)〉H = π(s), (ii)H = span{κ(s, ·)} (7)
I A continuous function over a compact set may be approximated uniformly by

a function in a RKHS equipped with a universal kernel [MXZ06].
I We use the squared exponential kernel in our experiments:

κ(s,s′) = exp{−1
2

(s− s′)Σ(s− s′)T} (8)
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Stochastic Gradient Descent in the RKHS

I Goal: Learn V , π and L using samples (st,at, rt,s′t)
I Solution: Stochastic semi-gradient descent [SB18] uses the directional

derivative of the loss where the target value yt is fixed:

yt := rt + γVt(s′t) (9)
I Using the Reproducing Property of the RKHS, the optimal V , π and L

functions in the RKHS are of the form:

V (s) =
N∑

n=1

wVnκ(sn,s), π(s) =
N∑

n=1

wπnκ(sn,s), L(s) =
N∑

n=1

wLnκ(sn,s)

Alg. 1: Q-Learning with Kernel Normalized Advantage Functions

Input: l0, {αt, βt, ζt, εt,Σt}t=0,1,2...
1: V0(·) = 0, π0(·) = 0,L0(·) = l0I, ρ0(·) = 0
2: for t = 0,1,2, . . . do
3: Obtain trajectory (st,at, rt,s′t) where at ∼ N (πt(st),Σt)
4: Compute the target value and temporal difference

yt = rt + γVt(s′t), δt = yt −Qt(st,at)
5: Compute the stochastic estimates of the gradients of the loss
∇̂VJ(Qt) = −δtκ(st, ·), ∇̂πJ(Qt) = −δtL(st)L(st)

T (at−πt(st))κ(st, ·),
∇̂LJ(Qt) = δtL(st)

T(at − πt(st))(at − πt(st))Tκ(st, ·)
6: Update V , π, L, ρ:

Vt+1 = Vt − αt∇̂VJ(Qt), πt+1 = πt − βt∇̂πJ(Qt),

Lt+1 = Lt − ζt∇̂LJ(Qt), ρt+1 = ρt + κ(st)
7: Obtain greedy compression of Vt+1, πt+1, Lt+1, ρt+1 via KOMP
8: end for
9: return V ,π,L

Model Composition

I Our approach is motivated by multi-agent systems with infrequent
communication.

I Models learned by separate systems are directly composed as a single
model that combines the strengths of each.

Given: N models πi each trained on Di = {(st,at, rt,s′t)}t=1,...Ni

Goal: Fit Π, which performs as well as π trained on
N⋃

i=1
Di

I Interpolate among πi to get Π by setting Π(s) = πi(s), ∀s
Challenge: Policies πi can disagree for s ∈ S
I While training πi, count the number of training samples around s to evaluate

the support of the model at s:

ρi ,t+1(s) = ρi ,t(s) + κ(st,s) (10)
I For every s ∈ S, choose the policy with the highest density of samples, ρi(s)

Alg. 2: Composition with Conflict Resolution

Input: {πi(s) =
∑Mi

j wijκ(s,sij),
ρi(s) =

∑Mi
j vijκ(s,sij)}i=1,2...,N, ε

1: Initialize Π(·) = 0, append centers D = [s11, . . . ,sij, . . .]
2: for each sij ∈ D chosen uniformly at random do
3: if ρi(sij) > maxk 6=i ρk(sij) then
4: Π = Π(·) + (πi(sij)− Π(sij))κ(sij, ·)
5: end if
6: end for
7: Obtain compression of π using KOMP with ε
8: return f

Obstacle Avoidance Tasks

I State: 5 range readings from LIDAR at
at an angular interval of 34◦ with a field
of view of 170◦

I Action: angular velocity of the Scarab
robot, a ∈ [ −0.3,0.3] rad/s

I Reward:

r (s) =

{
−200, if collision
+1, otherwise

I Sensor readings are received and
controls are issued at 10 Hz

I Constant forward velocity of 0.15 m/s

Figure: Four environments were simulated
using Gazebo.

Simulation and Experiment Results
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Figure: Reward averaged over
10 trials in the Round
environment (black)
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Figure: Training loss averaged
over 10 trials in the Round
environment (black)
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Figure: Model order averaged
over 10 trials in the Round
environment (black)

Policies / Reward Round Maze Circuit 2 Circuit 1
1 - Round 1000 -11663 -608 -608
2 - Maze 1000 1000 -5 -407
3 - Circuit 2 1000 -11663 1000 196
4 - Circuit 1 1000 -11462 -407 1000
1 / 2 1000 1000 -5 -206
1 / 3 1000 -11663 799 -206
1 / 4 1000 -11261 -206 799
2 / 3 1000 1000 1000 -5
2 / 4 1000 1000 -5 799
3 / 4 1000 -11462 397 397
1 / 2 / 3 1000 1000 799 196
1 / 2 / 4 1000 1000 -5 1000
1 / 3 / 4 1000 -11663 397 799
2 / 3 / 4 1000 1000 799 -206
1 / 2 / 3 / 4 1000 1000 1000 598

Table: Composability results

Cross-validation was
performed in simulation
on all compositions of
the 4 policies. We then
validate our approach
by testing these policies
on a real robot. The
policy trained only on
the Round environment
experienced 3 crashes
over 1,000 testing
steps. The composite
1/2/3/4 policy received
a reward of 1,000 with
no crashes.

Conclusions

Contributions:
I Stochastic gradient descent algorithm for RL in RKHS
I Formulation of the problem of composable learning
I Heuristic for policy composition

Shortcomings:
I Need to develop a theoretically justified metric of risk or uncertainty of the

learned policy
I Using kernel methods in large state spaces is impractical without

dimensionality reduction (Autoencoders, Sparse GPs using Pseudo-inputs)
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