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Obstacle Avoidance Tasks

Reinforcement Learning

» In Markov Decision problems, the goal is to find the action sequence that
maximizes the accumulated rewards at a given start state [Bel54]
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» Action-value function, the accumulation of rewards given initial s, a
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» Advantage Function, where max, A(s,a) = 0 [Bai94]
Q(s,a) = V(s) + A(s,a) (2)

» Parameterizing the advantage function as a quadratic function yields
computational savings [GLSL16]
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agent environment

from state s, take action a

Model to learn:

» V(s) - value of state s
» n(s) - policy at state s
» L(s)-slope ats

lllustration via Wikimedia

get reward R, new state s’

Optimizing the Bellman Error

» Bellman optimality equation [BS04]:
Q(s,a) = Eg|r(s,a,s’) +~ max Q(s',a)] (4)

» To find the optimal policy, we seek to satisty (4) for all state-action pairs,
yielding the cost functional:
J(V,7,L) = Esa(y(s,a) — Q(s.a))? (5)
where y(s,a) = Eg|r(s,a,s’) + v V(s')].
» Finding the Bellman fixed point reduces to the stochastic program:

V* L* 7" = arg v,wTérz;(S) J(V,nm, L). (6)

Reproducing Kernel Hilbert Spaces

» We restrict B(S) to be a reproducing Kernel Hilbert space (RKHS) H to
which V, = and L belong [KTSR17].

» An RKHS over S is a Hilbert space is equipped with a reproducing kernel,
an inner product-like map «x : S x § — R [NK09, AMPO09]:

(i){m, k(s, ) =7(s),  ()H = span{x(s,-)} (7)
» A continuous function over a compact set may be approximated uniformly by
a function in a RKHS equipped with a universal kernel [MXZ06].
» We use the squared exponential kernel in our experiments:
1

i(s,8') = exp{—5(s — 8)T(s - §)"} (8)
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Alg. 1: Q-Learning with Kernel Normalized Advantage Functions

Model Composition

_ _ _ L 1 - Rouna 1000 -11663 -608 -608 ..
» Our approach is motivated by multi-agent systems with infrequent 5 _ Maze 1000 1000 -5 407 on all compositions of
communication. o the 4 policies. We then
3 - Circuit 2 1000 -11663 1000 196

Alg. 2: Composition with Conflict Resolution

» Goal: Learn V, = and L using samples (s;, ay, 11, S}) » State: 5 range readings from LIDAR at
» Solution: Stochastic semi-gradient descent [SB18] uses the directional at an angular interval of 34° with a field
derivative of the loss where the target value y; is fixed: of view of 170°

Yt = 1y + v Vi(s)) (9) » Action: angular velocity of the Scarab
robot, a € [ —0.3,0.3] rad/s

» Reward:

» Using the Reproducing Property of the RKHS, the optimal V, = and L
functions in the RKHS are of the form:
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» Sensor readings are received and
controls are issued at 10 Hz

» Constant forward velocity of 0.15 m/s

Figure: Four environments were simulated

Input: b, {Ozt,ﬁt, Ct, €t, Zz‘}z‘:o,1,2... using Gazebo

1: V()() = O, ’7'(‘0(-) = O, Lo() = /()/7 ,00(-) =0

2: fort=0,1,2,...do

3:  Obtain trajectory (s, ay, 1r, ;) where a; ~ N (m(S¢), L¢)

4.  Compute the target value and temporal difference
Yi=r+yVi(St), Or=Yyr— QiSt,ay)

5. Compute the stochastic estimates of the gradients of the loss

Simulation and Experiment Results
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Figure: Reward averaged over Figure: Training loss averaged  Figure: Model order averaged
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9: return V,x,L over 10 trials in the Round

environment (black)

over 10 trials in the Round
environment (black)

Cross-validation was
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1000 validate our approach
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Table: Composability results

Conclusions

Input: {mi(s) = Z,M’ Wik (S, Sij),

" Contributions:
pi(S) = ZS- "Viik(S, Sij) fi=12..Ns €

» Stochastic gradient descent algorithm for RL in RKHS

t: Initialize T(-) = 0, append centers D = [s11, ..., Sj; . - ] » Formulation of the problem of composable learning

2: for each s; ¢ D chosen uniformly at random do > Heuristic for nolicy composition

3. |f p,'(S,'j) > man#,‘pk(S/j) then _ | P y P

e =10+ (mi(sy) — N(sy)n(sy. ) Shortcomings:

5. end If » Need to develop a theoretically justified metric of risk or uncertainty of the
6: end for learned policy

7. Obtain compression of = using KOMP with ¢ » Using kernel methods in large state spaces is impractical without

8: return f dimensionality reduction (Autoencoders, Sparse GPs using Pseudo-inputs)
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