Reinforcement Learning

In Markov Decision problems, the goal is to find the action sequences maximizes the accumulated rewards at a given start state [Bel

$$V(\mathbf{s}, \{\mathbf{a}_t\}_{t=0}^\infty) := \mathbb{E}_{\mathbf{s}'}[\sum_{t=0}^\infty \gamma^t r(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}'_t) \mid \mathbf{s}_0 = \mathbf{s}, \{\mathbf{a}_t\}_t^\infty]$$

Action-value function, the accumulation of rewards given initial

$$Q(\mathbf{s}, \mathbf{a}, {\mathbf{a}_t}_{t=1}^\infty) := \mathbb{E}_{\mathbf{s}'} \left[\sum_{t=0}^\infty \gamma^t r(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}'_t) \mid \mathbf{s}_0 = \mathbf{s}, \mathbf{a}_0 = \mathbf{a}, \right]$$

- Advantage Function, where $\max_{a} A(s, a) = 0$ [Bai94] $Q(\mathbf{s},\mathbf{a}) = V(\mathbf{s}) + A(\mathbf{s},\mathbf{a})$
- Parameterizing the advantage function as a quadratic function computational savings [GLSL16]

$$A(\mathbf{s},\mathbf{a}) = -\frac{1}{2}(\mathbf{a} - \pi(\mathbf{s}))L^{T}(\mathbf{s})L(\mathbf{s})(\mathbf{a} - \pi(\mathbf{s}))$$

Model to learn:

- \blacktriangleright V(s) value of state s
- \blacktriangleright $\pi(\mathbf{s})$ policy at state \mathbf{s}
- \blacktriangleright L(s) slope at s

agent ۲ from state *s*, take action *a*

Illustration via Wikimedia

get reward R, new state s

Optimizing the Bellman Error

Bellman optimality equation [BS04]:

$$Q^*(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\mathbf{s}'}[r(\mathbf{s}, \mathbf{a}, \mathbf{s}') + \gamma \max Q(\mathbf{s}', \mathbf{a}')]$$

To find the optimal policy, we seek to satisfy (4) for all state-act yielding the cost functional:

$$J(V, \pi, L) = \mathbb{E}_{s,a}(y(s, a) - Q(s, a))$$

where $y(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\mathbf{s}'}[r(\mathbf{s}, \mathbf{a}, \mathbf{s}') + \gamma V(\mathbf{s}')].$ Finding the Bellman fixed point reduces to the stochastic program

$$V^*, L^*, \pi^* = rg \min_{V, \pi, L \in \mathcal{B}(\mathcal{S})} J(V, \pi, L)$$
 .

- ▶ We restrict $\mathcal{B}(\mathcal{S})$ to be a reproducing Kernel Hilbert space (RKF) which V, π and L belong [KTSR17].
- \blacktriangleright An RKHS over S is a Hilbert space is equipped with a reproduc an inner product-like map $\kappa : S \times S \rightarrow \mathbb{R}$ [NK09, AMP09]:

(i)
$$\langle \pi, \kappa(\mathbf{S}, \cdot) \rangle_{\mathcal{H}} = \pi(\mathbf{S}),$$
 (ii) $\mathcal{H} = \operatorname{span}\{\kappa(\mathbf{S}, \cdot)\}$

- A continuous function over a compact set may be approximated a function in a RKHS equipped with a universal kernel [MXZ06]
- We use the squared exponential kernel in our experiments:

$$\kappa(\mathbf{s},\mathbf{s}') = \exp\{-\frac{1}{2}(\mathbf{s}-\mathbf{s}')\Sigma(\mathbf{s}-\mathbf{s}')^T\}$$

This work is supported by grants NSF DGE-1321851 and ARL DCIST CRA W911NF-17-2-0181.

Composable Learning with Sparse Kernel Representations

Ekaterina Tolstaya, Ethan Stump, Alec Koppel and Alejandro Ribeiro eig@seas.upenn.edu

Stochastic Gradient Descent in the RKHS

uence that 54]	 Goal: Learn V, π and L using samples (s_t, Solution: Stochastic semi-gradient descern derivative of the loss where the target value
°_0] (1) ∣s,a ┐	► Using the Reproducing Property of the RKI functions in the RKHS are of the form: N
$\{\mathbf{a}_t\}_{t=1}^{\infty}$	$V(\mathbf{S}) = \sum_{n=1}^{\infty} W_{Vn} \kappa(\mathbf{S}_n, \mathbf{S}), \;\; \pi(\mathbf{S}) = \sum_{n=1}^{\infty} \mathbf{W}_{\pi n} \kappa_n$
(2)	Alg. 1: Q-Learning with Kernel Normalized A
yields (3)	Input: I_0 , $\{\alpha_t, \beta_t, \zeta_t, \epsilon_t, \Sigma_t\}_{t=0,1,2}$ 1: $V_0(\cdot) = 0, \pi_0(\cdot) = 0, L_0(\cdot) = I_0I, \rho_0(\cdot) = 0$ 2: for $t = 0, 1, 2,$ do
environment	3: Obtain trajectory $(\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_t)$ where $\mathbf{a}_t \sim J$ 4: Compute the target value and temporal dif $y_t = r_t + \gamma V_t(\mathbf{s}_t'), \delta_t = y_t - Q_t(\mathbf{s}_t, \mathbf{a}_t)$ 5: Compute the stochastic estimates of the g $\hat{\nabla}_V J(Q_t) = -\delta_t \kappa(\mathbf{s}_t, \cdot), \hat{\nabla}_\pi J(Q_t) = -\delta_t L(\mathbf{s}_t)$
	$\hat{\nabla}_{L}J(Q_{t}) = \delta_{t}L(\mathbf{s}_{t})^{T}(\mathbf{a}_{t} - \pi_{t}(\mathbf{s}_{t}))(\mathbf{a}_{t} - \pi_{t}(\mathbf{s}_{t}))$ 6: Update V, π, L, ρ : $V_{t+1} = V_{t} - \alpha_{t}\hat{\nabla}_{V}J(Q_{t}), \pi_{t+1} = \pi_{t} - \beta_{t}\hat{\nabla}_{\pi}$ $L_{t+1} = L_{t} - \zeta_{t}\hat{\nabla}_{L}J(Q_{t}), \rho_{t+1} = \rho_{t} + \kappa(\mathbf{s}_{t})$ 7: Obtain greedy compression of V_{t+1}, π_{t+1}, L 8: end for 9: return V, π, L
	Model Composition
(4) tion pairs,	 Our approach is motivated by multi-agent s communication. Models learned by separate systems are d model that combines the strengths of each Given: N models π_i each trained on D_i = {(s_t, and the strength set the strengt set the strength set the strength set the strength set the
(5)	Goal : Fit Π , which performs as well as π trained
ram: (6)	 Interpolate among π_i to get Π by setting Π(s Challenge: Policies π_i can disagree for s ∈ S While training π_i, count the number of training the support of the model at s:
	$ \rho_{i,t+1}(\mathbf{s}) = \rho_{i,t}(\mathbf{s}) + $ For every $\mathbf{s} \in S$, choose the policy with the
HS) H to	Alg. 2: Composition with Conflict Resolution
cing kernel,	Input: $\{\pi_i(\mathbf{S}) = \sum_{i}^{M_i} W_{ij}\kappa(\mathbf{S},\mathbf{S}_{ij}),\}$
(7) ed uniformly by 6].	$\rho_{i}(\mathbf{s}) = \sum_{j}^{M_{i}} v_{ij}\kappa(\mathbf{s}, \mathbf{s}_{ij})\}_{i=1,2,N}, \epsilon$ 1: Initialize $\Pi(\cdot) = 0$, append centers $D = [\mathbf{s}_{11}, \mathbf{s}_{11}]$ 2: for each $\mathbf{s}_{ij} \in D$ chosen uniformly at random 3: if $\rho_{i}(\mathbf{s}_{ij}) > \max_{k \neq i} \rho_{k}(\mathbf{s}_{ij})$ then 4: $\Pi = \Pi(\cdot) + (\pi_{i}(\mathbf{s}_{ij}) - \Pi(\mathbf{s}_{ij}))\kappa(\mathbf{s}_{ij}, \cdot)$

- 6: **end for** 7: Obtain compression of π using KOMP with ϵ
- 8: **return**

5: **end if**

 $t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}'_t$ ent [SB18] uses the directional ue y_t is fixed: $V_t(\mathbf{s}'_t)$ KHS, the optimal V, π and L

(9)

$$\kappa(\mathbf{s}_n,\mathbf{s}), \ \ L(\mathbf{s}) = \sum_{n=1}^N \mathbf{w}_{Ln}\kappa(\mathbf{s}_n,\mathbf{s})$$

Advantage Functions

$$\mathcal{N}(\pi_t(\mathbf{s}_t), \Sigma_t)$$

radients of the loss
$$L(\mathbf{s}_t)^T (\mathbf{a}_t - \pi_t(\mathbf{s}_t)) \kappa(\mathbf{s}_t, \cdot),$$

$$J(Q_t),$$

 L_{t+1} , ρ_{t+1} via KOMP

systems with infrequent

directly composed as a single

$$\mathbf{a}_t, r_t, \mathbf{s}_t') \}_{t=1,...N_i}$$

d on $\bigcup_{i=1}^N D_i$
 $\mathbf{s}) = \pi_i(\mathbf{s}), \forall \mathbf{s}$

ning samples around **s** to evaluate

$\kappa(\mathbf{S}_t,\mathbf{S})$	(10)
highest density of samples,	$\rho_i(\mathbf{S})$

 $1,\ldots,\mathbf{S}_{ij},\ldots]$ om **do**

Obstacle Avoidance Tasks

- **State**: 5 range readings from LIDAR at at an angular interval of 34° with a field of view of 170°
- Action: angular velocity of the Scarab robot, $a \in [-0.3, 0.3]$ rad/s

• Reward:
$$r(s) = \begin{cases} -200, & \text{if} \\ 1 & \text{of} \end{cases}$$

- Sen controls are issued at 10 Hz
- Constant forward velocity of 0.15 m/s

Simulation and Experiment Results

Figure: Reward averaged over 10 trials in the Round environment (black)

Round	Maze	Circuit 2	Circuit 1
1000	-11663	-608	-608
1000	1000	-5	-407
1000	-11663	1000	196
1000	-11462	-407	1000
1000	1000	-5	-206
1000	-11663	799	-206
1000	-11261	-206	799
1000	1000	1000	-5
1000	1000	-5	799
1000	-11462	397	397
1000	1000	799	196
1000	1000	-5	1000
1000	-11663	397	799
1000	1000	799	-206
1000	1000	1000	598
	Round 1000 1000 1000 1000 1000 1000 1000 10	RoundMaze1000-11663100010001000-11663100010001000-116631000-112611000	RoundMazeCircuit 21000-11663-60810001000-51000-11663100010001000-51000116637991000-11261-20610001000100010001000510001000-510001000799100010007991000100051000100079910001000799100010007991000100079910001000799100010001000

Table: Composability results

Conclusions

Contributions:

- Heuristic for policy composition

Shortcomings:

- learned policy
- Using kernel methods in large state spaces is impractical without dimensionality reduction (Autoencoders, Sparse GPs using Pseudo-inputs)

CRA-W Grad Cohort Workshop

Penn Engineering Laboratory General Robotics, Automation, Sensing & Perception Lab

f collision otherwise eived and

Figure: Four environments were simulated using Gazebo.

Figure: Training loss averaged over 10 trials in the Round environment (black)

Figure: Model order averaged over 10 trials in the Round environment (black)

Cross-validation was performed in simulation on all compositions of the 4 policies. We then validate our approach by testing these policies on a real robot. The policy trained only on the Round environment experienced 3 crashes over 1,000 testing steps. The composite 1/2/3/4 policy received a reward of 1,000 with no crashes.

Stochastic gradient descent algorithm for RL in RKHS Formulation of the problem of composable learning

Need to develop a theoretically justified metric of risk or uncertainty of the