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Abstract— We consider Markov Decision Problems de-
fined over continuous state and action spaces, where an
autonomous agent seeks to learn a map from its states to
actions so as to maximize its long-term discounted accumu-
lation of rewards. We address this problem by considering
Bellman’s optimality equation defined over action-value
functions, which we reformulate into a nested non-convex
stochastic optimization problem defined over a Reproduc-
ing Kernel Hilbert Space (RKHS). We develop a functional
generalization of stochastic quasi-gradient method to solve
it, which, owing to the structure of the RKHS, admits
a parameterization in terms of scalar weights and past
state-action pairs which grows proportionately with the
algorithm iteration index. To ameliorate this complexity
explosion, we apply Kernel Orthogonal Matching Pursuit
to the sequence of kernel weights and dictionaries, which
yields a controllable error in the descent direction of
the underlying optimization method. We prove that the
resulting algorithm, called KQ Learning, converges with
probability 1 to a stationary point of this problem, yielding
a fixed point of the Bellman optimality operator under
the hypothesis that it belongs to the RKHS. Numerical
evaluation on the continuous Mountain Car task yields
convergent parsimonious learned action-value functions
and policies that are competitive with the state of the art.

I. INTRODUCTION

Markov Decision Problems offer a flexible framework
to address sequential decision making tasks under uncer-
tainty [2], and have gained broad interest in robotics [3],
control [4], and artificial intelligence [5]. Despite this
surge of interest, few works in reinforcement learning
address the computational difficulties associated with
continuous state and action spaces in a principled way
that guarantees convergence. The goal of this work is
to develop new reinforcement learning tools for con-
tinuous problems which are provably stable and whose
complexity is at-worst moderate.

In the development of stochastic methods for re-
inforcement learning, one may attempt to estimate
the transition density of the Markov Decision Process
(MDP) (model-based [6]), perform gradient descent on
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the value function with respect to the policy (direct
policy search [7]), and pursue value function based
(model-free [8], [9]) methods which exploit structural
properties of the setting to derive fixed point problems
called Bellman equations. We adopt the latter approach
in this work , motivated by the fact that an action-value
function tells us both how to find a policy and how to
evaluate it in terms of the performance metric we have
defined, and that a value function encapsulates structural
properties of the relationship between states, actions, and
rewards.

Consider the fixed point problem defined by Bell-
man’s optimality equation [10]. When the state and
action spaces are finite and small enough that expecta-
tions are computable, fixed point iterations may be used.
When this fails to hold, stochastic fixed point methods,
namely, Q-learning [9], may be used, whose conver-
gence may be addressed with asynchronous stochastic
approximation theory [11]. This approach is only valid
when the action-value (or Q) function may be repre-
sented as a matrix. However, when the state and action
spaces are infinite, this is no longer true, and the Q-
function instead belongs to a generic function space.

In particular, to solve the fixed point problem de-
fined by Bellman’s optimality equation when spaces
are continuous, one must surmount the fact that it is
defined for infinitely many unknowns, one example
of Bellman’s curse of dimensionality [10]. Efforts to
sidestep this issue assume that the Q-function admits a
finite parameterization, such as a linear [12] or nonlinear
[13] basis expansion, is defined by a neural network
[14], or that it belongs to a reproducing kernel Hilbert
Space (RKHS) [15], [16]. In this work, we adopt the
latter nonparametric approach, motivated by the fact that
combining fixed point iterations with different param-
eterizations may cause divergence [17], [18], and in
general the Q-function parameterization must be tied to
the stochastic update to ensure the convergence of both
the function sequence and its parameterization [19].

Our main result is a memory-efficient, non-
parametric, stochastic method that converges to a fixed
point of the Bellman optimality operator almost surely
when it belongs to a RKHS. We obtain this result
by reformulating the Bellman optimality equation as
a nested stochastic program, a topic investigated in



operations research [20] These problems have been ad-
dressed in finite settings with stochastic quasi-gradient
(SQG) methods[21] which use two time-scale stochastic
approximation to mitigate the fact that the objective’s
stochastic gradient not available due to its dependence
on a second expectation, referred to as the double
sampling problem in [12].

Here, we use a non-parametric generalization of SQG
for Q-learning in infinite MDPs (Section III), motivated
by its success for policy evaluation in finite [12] and
infinite MDPs [22]. However, a function in a RKHS
has comparable complexity to the number of training
samples processed, which is in general infinite, an issue
is often ignored in kernel methods for Markov decision
problems [23]. We address this memory bottleneck (the
curse of kernelization) by requiring memory efficiency
in both the function sample path and in its limit through
the use of sparse projections which are constructed
greedily via matching pursuit [24] , akin to [25], [22].
Greedy compression here is appropriate since (a) kernel
matrices induced by arbitrary data streams will likely
become ill-conditioned and hence violate assumptions
required by convex methods [26], and (b) parsimony is
more important than exact recovery as the SQG iterates
are not the target signal but rather a noisy stepping
stone to Bellman fixed point. Rather than unsupervised
forgetting [27], we tie the projection-induced error to
guarantee stochastic descent [25], only keeping those
dictionary points needed for convergence.

As a result, we conduct functional SQG descent
via sparse projections of the SQG. This maintains a
moderate-complexity sample path exactly towards Q∗,
which may be made arbitrarily close to a Bellman
fixed point by decreasing the regularizer. In contrast
to the convex structure in [22], the Bellman optimality
equation induces a non-convex cost functional, which
requires us to generalize the relationship between SQG
for non-convex objectives and coupled supermartingales
in [28] to RKHSs. In doing so, we establish that the
sparse projected SQG sequence converges almost surely
to the Bellman fixed point with decreasing learning rates
(Section IV). Moreover, on Continuous Mountain Car
[29], we observe that our learned action-value function
attains a favorable trade-off between memory efficiency
and Bellman error, which then yields a policy whose
performance is competitive with the state of the art.

II. MARKOV DECISION PROCESSES

We model an autonomous agent in a continuous space
as a Markov Decision Process (MDP) with continuous
states s ∈ S ⊂ Rp and actions a ∈ A ⊂ Rq. When in
state s and taking action a, a random transition to state
s′ occurs according to the conditional probability density
P(s′|s,a). After the agent transitions to a particular

s′ from s, the MDP assigns an instantaneous reward
r(s,a,s′), where the reward function is a map r : S ×
A×S → R.

In Markov Decision problems, the goal is to find the
action sequence {at}∞

t=0 so as to maximize the infinite
horizon accumulation of rewards, i.e., the value function:
V (s,{at}∞

t=0) := Es′ [∑
∞
t=0 γ tr(st ,at ,s′t) | s0 = s,{at}∞

t=0].
The action-value function Q(s,a) is the conditional mean
of the value function given the initial action a0 = a:

Q(s,a,{at}∞
t=1):=Es′

[
∞

∑
t=0

γ
tr(st ,at ,s′t)|s0=s,a0=a,{at}∞

t=1

]
.

(1)

We consider the case where actions at are chosen ac-
cording to a stationary stochastic policy, where a policy
is a mapping from states to actions: π: S → A. We
define Q∗(s,a) as the maximum of (1) with respect to
the action sequence. The reason for defining action-value
functions is that the optimal Q∗ may be used to compute
the optimal policy π∗ as

π
∗(s) = argmax

a
Q∗(s,a) . (2)

Thus, finding Q∗ solves the MDP. Value-function based
approaches to MDPs reformulate (2) by shifting the
index of the summand in (1) by one, as well as exploiting
the time invariance of the Markov transition kernel and
the homogeneity of the summand, to derive the Bellman
optimality equation:

Q∗(s,a) = Es′
[
r(s,a,s′)+ γ max

a′
Q∗(s′,a′)

∣∣s,a]. (3)

where the expectation is taken with respect to the con-
ditional distribution P(ds′ | s,a)] of the state s′ given the
state action pair (s,a). The right-hand side of Equation
(3) defines the Bellman optimality operator B∗: B(S ×
A)→B(S ×A) over B(S ×A), the space of bounded
continuous action-value functions Q: B(S ×A)→ R:

(B∗Q)(s,a) := Es′ [r(s,a,s′)+ γ max
a′

Q(s′,a′)]. (4)

[4] [Proposition 5.2] establishes that the fixed point of
(4) is the optimal action-value function Q∗. Thus, to
solve the MDP, we seek to compute the fixed point of
(4) for all (s,a) ∈ S ×A.

Compositional Stochastic Optimization. The func-
tional fixed point equation in (3) has to be simultane-
ously satisfied for all state action pairs (s,a). Alterna-
tively, we can integrate (3) over an arbitrary distribution
that is dense around any pair (s,a) to write a nested
stochastic optimization problem [28], [25], [22]. To do
so, begin by defining the function

f (Q;s,a)= Es′
[
r(s,a,s′)+ γ max

a′
Q(s′,a′)−Q(s,a)

∣∣s,a],
(5)



and consider an arbitrary everywhere dense distribution
P(ds,da)] over pairs (s,a) to define the functional

L(Q) =
1
2
Es,a

[
f 2(Q;s,a)

]
. (6)

Comparing (5) with (3) permits concluding that Q∗ is the
unique function that makes f (Q;s,a) = 0 for all (s,a).
It then follows that Q∗ is the only function that makes
the functional in (6) take the value L(Q) = 0. Since this
functional is also nonnegative, it follows that we can
write the optimal Q function as

Q∗ = argmin
Q∈B(S×A)

L(Q) . (7)

Computation of the optimal policy is thus equivalent to
solving the optimization problem in (7). This requires
a difficult search over all bounded continuous functions
B(S×A). We reduce this difficulty through a hypothesis
on the function class that we discuss next.

Reproducing Kernel Hilbert Spaces We propose re-
stricting B(S ×A) to be a Hilbert space H equipped
with a unique reproducing kernel, an inner product-like
map κ : (S ×A)× (S ×A)→ R such that

(i) 〈 f,κ((s,a),·)〉H= f (s,a), (ii) H=span{κ((s,a),·)} (8)

In (8), property (i) is called the reproducing prop-
erty. Replacing f by κ((s′,a′), ·) in (8) (i) yields the
expression 〈κ((s′,a′), ·),κ((s,a),·)〉H = κ((s′,a′),(s,a)),
the origin of the term “reproducing kernel.” Moreover,
property (8) (ii) states that functions f ∈H admit a basis
expansion in terms of kernel evaluations (9). Function
spaces of this type are referred to as reproducing kernel
Hilbert spaces (RKHSs). We may apply the Representer
Theorem to transform the functional problem into a
parametric one [30]. In the Reproducing Kernel Hilbert
Space (RKHS), the optimal Q function takes the follow-
ing form

Q(s,a) =
N

∑
n=1

wnκ((sn,an),(s,a)) (9)

where (sn,an) is a realization of the random variables
in S ×A. Q ∈ H is an expansion of kernel evaluations
only at the training samples.

One complication of the restriction B(S ×A) to the
RKHS H is that this setting requires the cost to be dif-
ferentiable with Lipschitz gradients, but the definition of
L(Q) [cf. (6)] defined by Bellman’s equation (4) is non-
differentiable due to the presence of the maximization
over the Q function. We approximate the non-smooth
cost by a smooth one by replacing the maxa Q(s,a′)
term in (6) by the softmax over continuous range A,
and, subsequently, we restrict focus to smoothed cost
L(Q). See [1] for details.

In this work, we restrict the kernel used to be in the
family of universal kernels, such as a Gaussian Gaus-
sian Radial Basis Function(RBF) kernel with constant
diagonal covariance Σ, i.e.,

κ((s,a),(s′,a′))=exp{−1
2
((s,a)−(s′,a′))Σ((s,a)−(s′,a′)T}

(10)

motivated by the fact that a continuous function over
a compact set may be approximated uniformly by a
function in a RKHS equipped with a universal kernel
[31].

To apply the Representer Theorem, we require the
cost to be coercive in Q [30], which may be satis-
fied through use of a Hilbert-norm regularizer, so we
define the regularized cost functional J(Q) = L(Q) +
(λ/2)‖Q‖2

H and solve the regularized problem (7), i.e.

Q∗ = argmin
Q∈H

J(Q) = argmin
Q∈H

L(Q)+
λ

2
‖Q‖2

H. (11)

Thus, finding a locally optimal action-value function in
an MDP amounts to solving the RKHS-valued compo-
sitional stochastic program with a non-convex objective
defined by the Bellman optimality equation (4). This
action-value function can then be used to obtain the
optimal policy (2). In the following section, we turn to
iterative stochastic methods to solve (11). We point out
that this is a step back from the original intent of solving
(7) to then find optimal policies π∗ using (2). This is the
case because the assumption we have made about Q∗

being representable in the RKHS H need not be true.
More importantly, the functional J(Q) is not convex in
Q and there is no guarantee that a local minimum of
J(Q) will be the optimal policy Q∗. This is a significant
difference relative to policy evaluation problems [22].

III. STOCHASTIC QUASI-GRADIENT METHOD

To solve 11, we propose applying a functional variant
of stochastic quasi-gradient (SQG) descent to the loss
function J(Q) [cf. (11)]. The reasoning for this approach
rather than a stochastic gradient method is the nested
expectations cause the functional stochastic gradient
to be still dependent on a second expectation which
is not computable, and SQG circumvents this issue.
Then, we apply the Representer Theorem (9) (“kernel
trick”) to obtain a tractable parameterization of this
optimization sequence, which unfortunately has per-
iteration complexity. We then mitigate this untenable
complexity growth while preserving optimality using
greedy compressive methods, inspired by [25], [22].

To find a stationary point of (11) we use quasi-
gradients ∇QJ(Q) of the functional J(Q) relative to the
function Q in an iterative process. To do so, introduce
an iteration index t and let Qt be the estimate of the
stationary point at iteration t. Further consider a random



state action pair (st ,at) independently and randomly
chosen from the distribution P(ds,da). Action at is
executed from state st resulting in the system moving
to state s′t . This outcome is recorded along with reward
r(st ,at ,s′t) and the action a′t that maximizes the action-
value function Qt when the system is in state s′t ,

a′t := argmax
a′

Qt(s′t ,a
′). (12)

The state (S) st , action (A) at , reward (R) r(st ,at ,s′t),
state (S) s′t , action (A) a′t are collectively referred to as
the SARSA tuple at time t.

Further consider the expressions for J(Q) in (11) and
L(Q) in (6) and exchange order of the expectation and
differentiation operators to write the gradient of J(Q) as

∇QJ(Qt) = Est ,at

[
f (Qt ;st ,at)×∇Q f (Qt ;st ,at)

]
+λQt .

(13)

Observe that to obtain samples of ∇QJ(Q,s,a,s′) we
require two different queries to a simulation oracle: one
to approximate the inner expectation over the Markov
transition dynamics defined by s′, and one for each
initial pair s,a which defines the outer expectation.
This complication, called the “double sampling prob-
lem,” was first identified in [21], [32], [13], has been
ameliorated through use of two time-scale stochastic
approximation, which may be viewed as a stochastic
variant of quasi-gradient methods [28].

Following this line of reasoning, we build up the total
expectation of one of the terms in (13) while doing
stochastic descent with respect to the other. In principle,
it is possible to build up the expectation of either term in
(13), but the mean of the difference of kernel evaluations
is of infinite complexity. On the other hand, the temporal
action difference, defined as the difference between the
action-value function evaluated at state-action pair (s,a)
and the action-value function evaluated at next state and
the instantaneous maximizing action (s′,a′), i.e.,

δ := r(s,a,s′)+ γQ(s′,a′)−Q(s,a) (14)

is a scalar, and thus so is its total expected value.
Therefore, for obvious complexity motivations, we build
up the total expectation of (14). To do so, we propose
recursively averaging realizations of (14) through the
following auxiliary sequence zt , initialized as null z0 = 0:

δt := r(st ,at ,s′t)+ γQ(s′t ,a
′
t)−Q(st ,at) ,

zt+1 = (1−βt)zt +βtδt (15)

where (st ,at ,s′t) is an independent realization of the
random triple (s,a,s′) and βt ∈ (0,1) is a learning rate.

To define the stochastic descent step, we replace the
first term inside the outer expectation in (13) with its
instantaneous approximation [γκ((s′,a′), ·)−κ((s,a), ·)]

evaluated at a sample triple (st ,at ,s′t), which yields the
stochastic quasi-gradient step:

Qt+1=(1−αtλ)Qt(·)−αt(γκ(s′t,a
′
t,·)−κ(st,at,·))zt+1) (16)

where the coefficient (1−αtλ ) comes from the regular-
izer and αt is a positive scalar learning rate. Moreover,
a′t = argmaxb Qt(s′,b) is the instantaneous Q-function
maximizing action. Now, using similar logic to [33], we
may extract a computationally tractable parameteriza-
tion of the infinite dimensional function sequence (16),
exploiting properties of the RKHS (8).
Kernel Parametrization Suppose Q0 = 0∈H. Then the
update in (16) at time t, inductively making use of the
Representer Theorem, implies the function Qt is a kernel
expansion of past state-action tuples (st ,at ,s′t)

Qt(s,a) =
2(t−1)

∑
n=1

wnκ(vn,(s,a)) = wT
t κXt((s,a)) (17)

The kernel expansion in (17), together with the func-
tional update (16), yields the fact that functional SQG
in H amounts to updating the kernel dictionary Xt ∈
Rp×2(t−1) and coefficient vector wt ∈ R2(t−1) as

Xt+1 = [Xt ,(st ,at),(s′t ,a
′
t)] ,

wt+1 = [(1−αtλ )wt ,αtzt+1,−αtγzt+1] (18)

In (18), the coefficient vector wt ∈R2(t−1) and dictionary
Xt ∈ Rp×2(t−1) are defined as

wt =[w1, . . . ,w2(t−1)] , (19)

Xt =[(s1,a1),(s′1,a
′
1), . . . ,(st−1,at−1),(s′t−1,a

′
t−1)],

and in (17), we introduce the notation vn = (sn,an) for
n even and vn = (s′n,a′n) for n odd. Moreover, in (17),
we make use of a concept called the empirical kernel
map associated with dictionary Xt , defined as

κXt (·) = [(κ((s1,a1), ·),κ((s′1,a′1), ·), . . . ,
. . . ,κ((st−1,at−1), ·),κ((s′t−1,a

′
t−1), ·)]T . (20)

Observe that (18) causes Xt+1 to have two more columns
than its predecessor Xt . We define the model order
as the number of data points (columns) Mt in the
dictionary at time t, which for functional stochastic
quasi-gradient descent is Mt = 2(t−1). Asymptotically,
then, the complexity of storing Qt(·) is infinite, and even
for moderately large training sets is untenable. Next, we
address this intractable complexity blowup, inspired by
[25], [22], using greedy compression methods [24].
Sparse Stochastic Subspace Projections Since the
update step (16) has complexity at least O(t) due to the
parametrization induced by the RKHS, it is impractical
in settings with streaming data or arbitrarily large train-
ing sets. We address this issue by replacing the stochastic
quasi-descent step (16) with an orthogonally projected



variant, where the projection is onto a low-dimensional
functional subspace of the RKHS HDt+1 ⊂H

Qt+1 = PHDt+1
[(1−αtλ )Qt(·)

−αt(γκ(s′t ,a
′
t , ·)−κ(st ,at , ·))zt+1)] (21)

whereHDt+1 = span{((sn,an), ·)}Mt
n=1 for some collection

of sample instances {(sn,an)} ⊂ {(st ,at)}u≤t . We define
κD(·) = {κ((s1,a1), ·) . . .κ((sM,aM), ·)} and κD,D as the
resulting kernel matrix from this dictionary. We seek
function parsimony by selecting dictionaries D such that
Mt <<O(t). Suppose that Qt is parameterized by model
points Dt and weights wt . Then, we denote Q̃t+1(·) =
(1−αtλ )Qt(·)−αt(γκ(s′t ,a′t , ·)−κ(st ,at , ·))zt+1) as the
SQG step without projection. This may be represented
by dictionary and weight vector [cf. (18)]:

D̃t+1 = [Dt ,(st ,at),(s′t ,a
′
t)] ,

w̃t+1 = [(1−αtλ )wt ,αtzt+1,−αtγzt+1] , (22)

where zt+1 in (22) is computed by (15) using Qt obtained
from (21):

δt := r(st ,at ,s′t)+ γQt(s′t ,a
′
t)−Qt(st ,at) ,

zt+1 = (1−βt)zt +βtδt . (23)

Observe that D̃t+1 has M̃t+1 = Mt + 2 columns which
is the length of w̃t+1. We proceed to describe the
construction of the subspaces HDt+1 onto which the
SQG iterates are projected in (21). Specifically, we select
the kernel dictionary Dt+1 via greedy compression. We
form Dt+1 by selecting a subset of Mt+1 columns from
D̃t+1 that best approximates Q̃t+1 in terms of Hilbert
norm error. To accomplish this, we use kernel orthogonal
matching pursuit [25], [22] with error tolerance εt to find
a compressed dictionary Dt+1 from D̃t+1, the one that
adds the latest samples. For a fixed dictionary Dt+1, the
update for the kernel weights is a least-squares problem
on the coefficient vector:

wt+1 = κ
−1
Dt+1Dt+1

κDt+1D̃t+1
w̃t+1 (24)

We must also tune εt to ensure both stochastic descent
and finite model order.

We summarize the proposed method, KQ-Learning, in
Algorithm 1, the execution of the stochastic projection
of the functional SQG iterates onto subspaces HDt+1 .
We begin with the initial function null Q0 = 0, with
an empty dictionary and coefficients (Step 1). At each
step, given an i.i.d. sample (st ,at ,s′t) and step-size αt ,
βt (Steps 2-5), we compute the unconstrained functional
SQG iterate Q̃t+1(·) = (1−αtλ )Qt(·)−αt(γκ(s′t ,a′t , ·)−
κ(st ,at , ·))zt+1) parametrized by D̃t+1 and w̃t+1 (Steps
6-7), which are fed into KOMP (Algorithm 2) [25] with
budget εt , (Step 8).

In order to implement Algorithm 1, we require the
evaluation of the instantaneous maximizing action

Algorithm 1 KQ-Learning

Input: {αt ,βt ,εt}t=0,1,2...
1: Q0(·) = 0,D0 = [],w0 = [],z0 = 0
2: for t = 0,1,2, . . . do
3: Obtain trajectory (st ,at ,s′t) via exploratory policy
4: Compute max action:a′=πt(s′)=argmaxa′Qt(s′t ,a′t)
5: Update temporal action diff. δt and aux. seq. zt+1

δt = r(st ,at ,s′t)+ γQt(s′t ,a
′
t)−Qt(st ,at)

zt+1 = (1−βt)zt +βtδt .

6: Compute functional stochastic quasi-gradient step

Q̃t+1=(1−αtλ)Qt(·)−αt(γκ(s′t,a
′
t,·)−κ(st ,at ,·))zt+1).

7: Update dictionary D̃t+1 = [Dt ,(s,a),(s′,a′)] ,
weights w̃t+1 = [(1−αtλ )wt ,αtzt+1,−αtγzt+1].

8: Greedily compress function with KOMP
(Qt+1,Dt+1,wt+1) = KOMP(Q̃t+1, D̃t+1, w̃t+1)

9: end for
10: return Q

at = argmaxa Qt((x,a). We use simulated annealing to
approximate the maximum for a mixture of Gaussians
(Radial Basis Functions, RBF). In Section IV, we
assume that the argmax is evaluated exactly.

IV. CONVERGENCE ANALYSIS

In this section, we shift focus to the task of estab-
lishing that the sequence of action-value function esti-
mates generated by Algorithm 1 actually yield a locally
optimal solution to the Bellman optimality equation,
which, given intrinsic the non-convexity of the problem
setting, is the best one may hope for in general through
use of numerical stochastic optimization methods. Our
analysis extends the ideas of coupled supermartingales
in reproducing kernel Hilbert spaces [22], which have
been used to establish convergent policy evaluation
approaches in infinite MDPs (a convex problem), to non-
convex settings, and further generalizes the non-convex
vector-valued setting of [28].

Before proceeding with technical assumptions, we
introduce a few definitions: the functional stochastic
quasi-gradient of the regularized objective is defined as

∇̂QJ(Qt ,zt+1;st ,at ,s′t) =
(γκ((s′t ,a

′
t), ·)−κ((st ,at), ·))zt+1 +λQt , (25)

and its sparse-subspace projected variant as
∇̃QJ(Qt ,zt+1;st ,at ,s′t) =
(Qt−PHDt+1

[Qt −αt∇̂QJ(Qt ,zt+1;st ,at ,s′t)])/αt . (26)

Note that the update may be rewritten as a stochastic
projected quasi-gradient step rather than a stochastic
quasi-gradient step followed by a set projection, i.e.,



Qt+1 = Qt −αt∇̃QJ(Qt ,zt+1;st ,at ,s′t) . (27)

With these definitions, we may state our main assump-
tions required to establish convergence of Algorithm 1.
Assumption 1 The state space S ⊂ Rp and action
space A⊂Rq are compact, and the reproducing kernel
map may be bounded as

sup
s∈S,a∈A

√
κ((s,a),(s,a)) = K < ∞ (28)

Assumption 2 The temporal action difference δ and
auxiliary sequence z satisfy the zero-mean, finite con-
ditional variance, and Lipschitz continuity conditions:

E[δ |s,a] = δ̄ , E[(δ−δ̄ )2]≤σ
2
δ
, E[z2 |s,a]≤G2

δ
(29)

where σδ and Gδ are positive scalars, and δ̄ = E{δ |
s,a} is defined as the expected value of the temporal
action difference conditioned on state s and action a.

Assumption 3 The functional gradient of the temporal
action difference is an unbiased estimate for ∇QJ(Q)
and the difference of the reproducing kernels expression
has finite conditional variance:

E[(γκ((s′t ,a
′
t), ·)−κ((st ,at), ·))δ ] = ∇QJ(Q) (30)

E{‖γκ((s′t ,a
′
t), ·)−κ((st ,at), ·)‖2

H|Ft} ≤ G2
Q (31)

Moreover, the projected stochastic quasi-gradient of the
objective has finite second conditional moment as

E{‖∇̃QJ(Qt ,zt+1;st ,at ,s′t)‖2
H|Ft} ≤ σ

2
Q (32)

and the temporal action difference is Lipschitz con-
tinuous with respect to the action-value function Q.
Moreover, for any two distinct δ and δ̄ , we have

‖δ − δ̄‖ ≤ LQ‖Q− Q̃‖H (33)

with Q, Q̃ ∈H distinct Q-functions; LQ > 0 is a scalar.

Assumption 1 regarding the compactness of the state
and action spaces of the MDP holds for most application
settings and limits the radius of the set from which
the MDP trajectory is sampled. The mean and variance
properties of the temporal difference stated in Assump-
tion 2 are necessary to bound the error in the descent
direction associated with the stochastic sub-sampling
and are required to establish convergence of stochastic
methods. Assumption 3 is similar to Assumption 2,
but instead of establishing bounds on the stochastic
approximation error of the temporal difference, limits
stochastic error variance in the RKHS. Moreover, (33)
is justified since the maximum of a continuous function
is Lipschitz in the infinity norm, which can be related
to the Hilbert norm through a constant factor. These are
natural extensions of the conditions needed for vector-
valued stochastic compositional gradient methods.

The compactness of S and A (Assumption 1) implies
that H is a compact function space, which together with
the closedness of Hilbert subspaces HDt , mean Qt is
contained within compact sets for all t due to the use of
set projections in (21), meaning

‖Qt‖H ≤ D for all t , (34)

where D > 0 is some positive constant.

Theorem 1 Consider the sequence zt and {Qt} as
stated in Algorithm 1. Assume the regularizer is positive
λ > 0, Assumptions 1-3 hold, and the step-size condi-
tions hold, with C > 0 a positive constant:

∞

∑
t=1

αt = ∞,
∞

∑
t=1

βt = ∞,
∞

∑
t=1

α
2
t +β

2
t +

α2
t

βt
< ∞,εt =Cα

2
t

(35)

Then ‖∇QJ(Q)‖H converges to null with probability
1, and hence Qt attains a stationary point of (11).
In particular, the limit of Qt achieves the regularized
Bellman fixed point restricted to the RKHS.

Theorem 1 establishes that Algorithm 1 converges
almost surely to a stationary solution of the problem
(11) defined by the Bellman optimality equation in a
continuous MDP. See [1] for the proof. This is one
of the first Lyapunov stability results for Q-learning
in continuous state-action spaces with nonlinear func-
tion parameterizations, which are intrinsically necessary
when the Q-function does not admit a lookup table
(matrix) representation, and should form the founda-
tion for value-function based reinforcement learning in
continuous spaces. A key feature of this result is that
the complexity of the function parameterization will not
grow untenably large due to the use of our KOMP-based
compression method which ties the sparsification bias εt
to the algorithm step-size αt . In the following section,
we investigate the empirical validity of the proposed
approach on a classic autonomous control task called
the Continuous Mountain Car.

V. EXPERIMENTS

We benchmark KQ-Learning (Algorithm 1) on a
classic control problem, the Continuous Mountain Car
[30], which is featured in OpenAI Gym [35]. In this
problem, the state space is p= 2 dimensional, consisting
of position and velocity, bounded within [−1.2,0.6] and
[−0.07,0.07], respectively. The action space is q = 1
dimensional: force on the car, within the interval [−1,1].
The reward function is 100 when the car reaches the goal
at position 0.6, and −0.1a2 for any action a.

We used Gaussian RBFs with a fixed non-isotropic
kernel bandwidth σ1 = 0.8, σ2 = 0.07, σ3 = 1.0 for
all experiments. The relevant parameters are the step-
sizes α and β , the regularizer λ , and the approximation
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Fig. 1: Results of 10 experiments over 500,000 training steps were averaged (black curve) to demonstrate the learning
progress for the effective, convergent, and parsimonious solution. Fig. 1a shows the average reward obtained by the ε-
greedy policy during training. An average reward over 90 (green) indicates that we have solved Continuous Mountain
Car, steering towards the goal location. Fig. 1b shows the Bellman error for testing samples (6) normalized by the
Hilbert norm of Q, which converges to a small non-zero value. Fig. 1c shows the number of points parameterizing
the kernel dictionary of Q during training, which remains under 55 on average. Overall, we solve Continuous
Mountain Car with a complexity reduction by orders of magnitude relative to existing methods [14], [34].

(a) Value function V (s) derived from limiting Q(s,a) (b) Policy π(s) derived from limiting Q(s,a)

Fig. 2: The learned Q-function is easily interpretable: we may visualize the value function, V (s) = maxa Q(s,a) (2a)
and corresponding policy π(s) = argmaxa Q(s,a) (2b). In Fig. 2a, the color indicates the value of the state, which
is highest (dark red) near the goal 0.6. At this position, for any velocity, the agent receives an award of 100 and
concludes the episode. In Fig. 2b, the color indicates the force on the car (action), for a given position and velocity
(state). The learned policy takes advantage of the structure of the environment to accelerate the car without excess
force inputs. The dictionary points are pictured in white and provide coverage of the state-action space.

error constant, C, where we fix the compression budget
ε =Cα2. These learning parameters were tuned through
a grid search procedure, which yielded the following
selections: γ = 0.99, σ = [0.8,0.07,1.0], λ = 10−6, ε =
0.1, T = 5×105, α = 0.5, β = 0.5. As the agent traverses
the environment, we select actions randomly, initially
with probability 1, and then exponentially decay this
likelihood to 0.1 after 105 exploratory training steps.

The results of this experiment are given in Figure
1: here we plot the normalized Bellman test error Fig.
1b, defined by the sample average approximation of (6)

divided by the Hilbert norm of Qt over a collection of
generated test trajectories, as well as the average rewards
during training (Fig. 1a), and the model order, i.e., the
number of training examples in the kernel dictionary
(Fig. 1c), all relative to the number of training samples
processed. Observe that the Bellman test error converges
and the interval average rewards approach 90, which is
the benchmark used to designate a policy as “solving”
Continuous Mountain Car. This is comparable to exist-
ing top entries on the OpenAI Leaderboard [35], such as
Deep Deterministic Policy Gradient [34] . Moreover, we



obtain this result with a complexity reduction by orders
of magnitude relative to existing methods for Q-function
and policy representation.

Additionally, few heuristics are required to ensure
KQ-Learning converges, which is in contrast to neural
network approaches to Q-learning. One shortcoming of
our implementation is its sample efficiency, which could
improved through an experience replay buffer. Such
methods re-reveal past trajectory data to the agent based
on the magnitude of their temporal action difference, for
example, and have been shown to accelerate learning.
Alternative, variance reduction, acceleration, or Quasi-
Newton methods would improve the learning rate.

An additional feature of our method is the inter-
pretability of the resulting Q function, which we use
to plot the value function (2a) and policy (2b). One
key metric is the coverage of the kernel points in the
state-action space. We can make conclusions about the
generalizability of the policy by the density of the model
points throughout the space. Also, we can interpret
which past experiences make an impact on the current
value and policy evaluation. This may have particular
importance in mechanical or econometric applications,
where the model points represent physical phenomena
or specific events in financial markets.
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