
Composable Learning with Sparse Kernel Representations

Ekaterina Tolstaya1, Ethan Stump2, Alec Koppel2, Alejandro Ribeiro1

Abstract— We present a reinforcement learning algorithm for
learning sparse non-parametric controllers in a Reproducing
Kernel Hilbert Space. We improve the sample complexity of
this approach by imposing a structure of the state-action
function through a normalized advantage function (NAF).
This representation of the policy enables efficiently composing
multiple learned models without additional training samples
or interaction with the environment. We demonstrate the
performance of this algorithm on learning obstacle-avoidance
policies in multiple simulations of a robot equipped with a laser
scanner while navigating in a 2D environment. We apply the
composition operation to various policy combinations and test
them to show that the composed policies retain the performance
of their components. We also transfer the composed policy
directly to a physical platform operating in an arena with
obstacles in order to demonstrate a degree of generalization.

I. INTRODUCTION

A key goal in the design of distributed robot teams is the
ability to learn collaboratively, so that knowledge and expe-
rience gained by one system can be seamlessly incorporated
in another. Parallel experiences have already been used to
stabilize and hasten joint learning [1], but we argue that there
is also a need for learning techniques designed for loosely-
coupled teams, in which members may be disconnected for
long periods of time and then briefly reconnect to share
information and coordinate. We re-consider joint learning
problems where coordination is now an infrequent event and
not part of the update cycle.

This problem requires composable learning, the capabil-
ity for models learned by different systems to be directly
composed as a single model that combines the strengths
of each component. We need model representations that
can be joined without additional training, which is a major
challenge for modern data-driven (deep) machine learning.
Different agents with different experiences will invariably
develop different representations that cannot be directly
combined. Though the agents may use the same deep neural
network architecture, each structurally-equivalent weight will
be specialized for different purposes.

To capture this notion of composability, we choose instead
to use models that live in a Reproducing Kernel Hilbert
Space (RKHS), a classic non-parametric learning approach,
in which a learned model is represented directly over its
training data [2]. Because the domain of the learned model’s

This work is supported by grants NSF DGE-1321851 and ARL DCIST
CRA W911NF-17-2-0181.

1Department of ESE, University of Pennsylvania, Philadelphia, PA 19104,
USA {eig, aribeiro}@seas.upenn.edu.

2Computational and Information Sciences Directorate, U.S. Army
Research Laboratory, Adelphi, MD 20783, USA {ethan.a.stump2.civ,
alec.e.koppel.civ, }@mail.mil.

Fig. 1: This drawing illustrates the concept of four policies,
trained on individual environments and each represented
with their own kernel support, being composed into a single
policy with broader support that applies everywhere. These
four training environments (referred to as Maze, Circuit 1,
Circuit 2, and Round) were used in simulation as part of the
demonstration of our approach to composable learning.

applicability is directly represented by its support, we can
imagine how models that were developed over separate
regions of the data space can combine their supports into
one broader model. Recent work on online learning of
sparse kernel functions [3] gives us tools for building larger
kernel functions while minimizing the number of basis points
required in the support.

We apply this model composition approach to the sce-
nario of robots learning to avoid obstacles by experienc-
ing collisions, a well-studied problem that has been suc-
cessfully solved on physical platforms using methods that
blend reinforcement learning with foundational techniques



in optimal control [4] or supervised learning [5]. Because
our primary interest is understanding the composability of
obstacle-avoiding policies, we opt to learn our policies using
Q-learning as a stand-in for more sophisticated approaches,
based on recent work in Q-learning with sparse kernel
representations [6]. To enable learning control policies in
the continuous action space of our problem, we propose a
kernelized version of the Normalized Advantage Function
Q-learning algorithm [7].

In the context of Q-learning, the density of kernel support
of the converged policy is a reflection of the states where we
can expect that policy to be near optimal, since these states
are drawn from the stationary distribution of the Bellman
optimality operator. We suggest the use of the density of
the support to decide which component policy should be
chosen to dominate in a composition of policies in a region
of the state space. We can represent this density directly in
the RKHS as an application of the Kernel Mean Embedding
[8], but with the addition of our sparsity-inducing procedures.

The main contributions of this work are:

1) An algorithm for composing multiple RKHS functions
according to their density of kernel support.

2) A Kernel Normalized Advantage Function Q-learning
algorithm that extends [7] to learn RKHS policies.

3) A proof-of-concept demonstration in which we: (a) train
obstacle-avoidance policies in multiple simulations of
a robot equipped with a laser scanner and navigating
in a 2D environment; (b) apply composition to various
policy combinations and test them to show that the
composed policies retain the performance of their com-
ponents; and (c) transfer the composed policy directly to
a physical platform operating in an arena with obstacles
in order to elicit a sense of generalization.

II. NORMALIZED ADVANTAGE FUNCTIONS IN RKHS

We model an autonomous agent in a continuous space as a
Markov Decision Process (MDP) with continuous states s ∈
S ⊆Rp and actions a ∈A⊆Rq. When in state s and taking
action a, a random transition to state s′ occurs according to
the conditional probability density P(s′|s,a). After the agent
to a particular s′ from s, the MDP assigns an instantaneous
reward r(s,a,s′), where the reward function is a map r : S×
A×S → R.

In Markov Decision problems[9], the goal is to find the
action sequence {at}∞

t=0 so as to maximize the infinite hori-
zon accumulation of rewards, i.e., the value: V (s,{at}∞

t=0) :=
Es′ [∑

∞
t=0 γ tr(st ,at ,s′t) | s0 = s,{at}∞

t=0] [10]. The action-value
function Q(s,a) is the conditional mean of the value function
given the initial action a0 = a:

Q(s,a,{at}∞
t=1):= (1)

Es′

[
∞

∑
t=0

γ
tr(st ,at ,s′t)|s0=s,a0=a,{at}∞

t=1

]
We consider the case where actions at are chosen according
to a stationary stochastic policy, where a policy is a mapping

from states to actions: π: S →A. We define Q∗(s,a) as the
maximum of (1) with respect to the action sequence.

It’s possible to formulate finding the optimal action-value
function as a fixed point problem [11]: shift the index of
the summand in (1) by one, make use of the time invariance
of the Markov transition kernel, and the homogeneity of the
summand, to derive the Bellman optimality equation :

Q∗(s,a)=Es′[r(s,a,s′)+ γ max
a′

Q(s′,a′)] (2)

The reason for defining action-value functions is that the
optimal Q∗ may be used to compute the optimal policy π∗

as
π
∗(s) = argmax

a
Q∗(s,a) . (3)

Computation of the optimal policy for continuous action
problems requires maximizing the Q function (3) which may
not have a closed form, and can be challenging. To mitigate
this issue, we hypothesize that Q has a special form: it is a
sum of the value and an advantage [12]:

Q(s,a) =V (s)+A(s,a) (4)

According to the definition of the action-value function,
we require that maxa Q(s,a) = V (s). Therefore, the optimal
action has no advantage: maxa A∗(s,a) = 0.

For this hypothesis to yield computational savings, we
parametrize the advantage function as a quadratic function
[7]. We define L(s) : S → A×A as a matrix function, so
LT (s)L(s) is positive definite. The policy is a bounded vector
function π : S →A.

A(s,a) =−1
2
(a−π(s))LT (s)L(s)(a−π(s)) (5)

Thus, we assume the advantage function is quadratic in
the actions, which is restrictive, albeit sufficient, for the
applications we examine.

To find the optimal policy, we seek to satisfy (2) for all
state-action pairs, yielding the cost functional J̃(Q):

J̃(V,π,L) = Es,a(y(s,a)−Q(s,a))2, (6)

where y(s,a) =Es′ [r(s,a,s′)+γV (s′)]. Substituting (4), find-
ing the Bellman fixed point reduces to the stochastic pro-
gram:

V ∗,L∗,π∗ = argmin
V,π,L∈B(S)

J̃(V,π,L) . (7)

Since searching over value functions that are arbitrary
bounded continuous functions B(S) is untenable, we restrict
B(S) to be a reproducing Kernel Hilbert space (RKHS) H
to which V (s) belongs [10]. Further, the quadratic param-
eterization of the advantage function means that π and L
also belong to H. An RKHS over S is a Hilbert space is
equipped with a reproducing kernel, an inner product-like
map κ : S ×S → R [13], [14]:

(i)〈π,κ(s,·)〉H=π(s), (ii)H=span{κ(s,·)} (8)



In this work, we restrict the kernel used to be in the family
of universal kernels, such as a Gaussian kernel with constant
diagonal covariance Σ, i.e.,

κ((s),(s′,))=exp{−1
2
((s)−(s′))Σ((s,)−(s′)T} (9)

motivated by the fact that a continuous function over a
compact set may be approximated uniformly by a function
in a RKHS equipped with a universal kernel [15].

To apply the Representer Theorem, we require the cost
to be coercive in V , π and L [14], which may be sat-
isfied through use of a Hilbert-norm regularizer, so we
define the regularized cost functional J(V,π,L)= J̃(V,π,L)+
(λ/2)(‖V‖2

H + ‖π‖2
H + ‖L‖2

H) and solve the regularized
problem.

V ∗,π∗,L∗ = argmin
V,π,L∈H

J(V,π,L) (10)

= argmin
V,π,L∈H

J̃(V,π,L)+
λ

2
(‖V‖2

H+‖π‖2
H+‖L‖2

H).

We point out that this is a step back from the original intent
of solving (7) because the assumption we have made about
V ∗, π∗, and L∗ being representable in the RKHS H need not
be true. More importantly, the functional J(V,π,L) is not
convex in V , π , and L and there is no guarantee that a local
minimum of J(V,π,L) will be the optimal policy π∗. This is
a significant difference relative to policy evaluation problems
[16]. In the next section, we describe a method for solving
(10) in parallel and then composing sparse solutions.

III. COMPOSABLE LEARNING IN RKHS

To enable efficient learning in diverse environments in
parallel, we require a composable representation of the
control policy π(s), which is obtained through a sparse kernel
parametrization. First, we develop an algorithm for learning
these policy representations using a sequence of observations
from a single environment.

A. Q-Learning with Kernel Normalized Advantage Functions

To solve (10), we follow the semi-gradient TD approach
described by [17], which uses the directional derivative of
the loss along the direction where ŷt(s,a) is fixed and
independent of Qt . To obtain the semi-gradient at the sample
(st ,at ,rt ,s′t), we define the fixed target value yt(st ,at ,rt ,s′t) =
rt +γVt(s′t) and the temporal difference as δt = yt−Qt(st ,at).
Then, we apply the chain rule to the resulting functional
stochastic directional derivative, together with the repro-
ducing property of the RKHS (8) to obtain the stochastic
functional semi-gradients of the loss J(V,π,L) as

∇̂V J(V,π,L) =−δtκ(st) (11)

∇̂π J(V,π,L) =−L(st)L(st)
T (at −πt(st))δtκ(st)

∇̂LJ(V,π,L) = L(st)
T (at −πt(st))(at −πt(st))

T
δtκ(st)

As a result, V,π,L ∈H are expansions of kernel evaluations
only at past observed states and the optimal V , π and L

functions in the Reproducing Kernel Hilbert Space (RKHS)
take the following form

V (s) =
N

∑
n=1

wV nκ(sn,s), (12)

π(s) =
N

∑
n=1

wπnκ(sn,s), L(s) =
N

∑
n=1

wLnκ(sn,s)

We propose the Kernel Normalized Advantage Functions
(KNAF) variant of Q-Learning to iteratively learn the action-
value function while following trajectories with a stochastic
policy. This algorithm includes the approximation of a kernel
density metric ρ(s), which is later used to compose multiple
learned models (14). The V , π , L and ρ function represen-
tations are compressed with Kernel Orthogonal Matching
Pursuit (KOMP), where we tie the compression to the
learning rate to preserve tractability and convergence of the
learning process [18], [3].

Algorithm 1 Q-Learning with Kernel Normalized Advantage
Functions (KNAF)

Input: l0, {αt ,βt ,ζt ,εt ,Σt}t=0,1,2...
1: V0(·) = 0,π0(·) = 0,L0(·) = l0I,ρ0(·) = 0
2: for t = 0,1,2, . . . do
3: Obtain trajectory realization (st ,at ,rt ,s′t) using a

stochastic policy πt(st)∼N (πt(st),Σt)
4: Compute the target value and Bellman error

ŷt(st ,at ,rt ,s′t) = rt + γVt(s′t), δt = ŷt −Qt(st ,at)
5: Compute the stochastic estimates of the gradients of

J with respect to V , π and L
∇̂V J(Qt) =−δtκ(st)

∇̂π J(Qt) =−L(st)L(st)
T (at −πt(st))δtκ(st)

∇̂LJ(Qt) = L(st)
T(at −πt(st))(at −πt(st))

T
δtκ(st)

6: Update V , π , L, ρ:
Vt+1 =Vt(·)−αt∇̂V J(Qt),

πt+1 = πt(·)−βt∇̂π J(Qt),

Lt+1 = Lt(·)−ζt∇̂LJ(Qt)

ρt+1 = ρt(·)+κ(st)
7: Obtain greedy compression of Vt+1, πt+1, Lt+1, ρt+1

via KOMP with budget εt
8: end for
9: return V ,π ,L

Alg. 1 produces locally optimal policy representations of
low complexity, sparsified using KOMP. These parsimonious
representations reduce the complexity of real-time policy
evaluation and enable the efficient policy composition pro-
cedure described in the next section.

B. Model Composition

The key novelty of our approach is the ability to compose
multiple control policies without additional training samples.
We summarize a procedure for projecting N policies trained
in parallel on different environments using Algorithm 1



πi(s) = ∑ j wi jκ(s,si j),for i = 1, . . . ,N, to a single function
Π(s) = ∑ j w jκ(s,s j).

We seek an interpolation between multiple candidate poli-
cies, which preserves the values of the original functions. A
simple linear combination or sum is insufficient because we
want to set Π(s) = πi(s) for all s in the kernel dictionaries
of the candidate policies. To project multiple functions πi
into one RKHS, we iterate through all dictionary points and
perform the following update on Π(·) at si j given πi(si j):

Π(·) = Π(·)+(πi(si j)−Π(si j))κ(si j, ·) (13)

The next challenge we address is resolving local conflicts
among πi. We score the reliability of the πi in the neigh-
borhood of s by the number of gradient steps performed
in that neighborhood during training, which is the same
as the number of observations at that state in Alg. 1. We
cannot directly use the density of kernel dictionary elements
because the pruning step of Alg. 1 limits the density of the
representation via compression with budget εt . To accurately
represent the number of observations in a neighborhood of
the state space, we propose to augment the approximation
of V , π and L with a fourth function, ρ , which is the kernel
mean embedding of the observed states, representing the
probability distribution of states observed during training
[19]. To incorporate this approach into Algorithm 1, we
augment Step 6 of Algorithm 1 with a density estimation
step:

ρt+1 = ρt(·)+κ(st , ·) (14)

When ρ is repeatedly pruned along with V , π , and L,
the removed weights are projected onto nearby dictionary
elements, producing non-unity weights for each dictionary
element. This results in a sparse representation of the kernel
mean embedding, accurate to ε over the entire state-space.
This approach is inspired by kernel density estimation [8].

In Algorithm 2, we first accumulate dictionary points from
all candidate policies into one matrix D and initialize the
composite policy to zero, Π(·) = 0. Then, we choose points
si j from D uniformly without replacement and compare the
kernel density at si j of πi, the function of origin for that
observation, against the density at si j of πk for k 6= i, the
other candidate functions. If the density of πi is greater, we
add that point to the composite result because it is deemed
most reliable in the neighborhood of si j in the state space.

Algorithm 2 Composition with Conflict Resolution

Input: {πi(s) = ∑
Mi
j wi jκ(s,si j),

ρi(s) = ∑
Mi
j vi jκ(s,si j)}i=1,2...,N , ε

1: Initialize Π(·) = 0, append centers D = [s11, . . . ,si j, . . .]
2: for each si j ∈ D chosen uniformly at random do
3: if ρi(si j)> maxk 6=i ρk(si j) then
4: Π = Π(·)+(πi(si j)−Π(si j))κ(si j, ·)
5: end if
6: end for
7: Obtain compression of π using KOMP with ε

8: return f

For our application, we are able to estimate ρ indirectly
by the density of dictionary points of a policy π around state
s:

ρ̃(π,s) = ∑
sk∈π

κ(s,sk) (15)

This simplification can be used because the structure of the
reward function induces an a approximation of a kernel mean
embedding on the kernel dictionary of π itself. This does
not hold for all problems. For example, if the optimal value,
policy, and L functions are all zero in a region of the state
space, then all kernel points in the region will be pruned
away and the density of the dictionary will not accurately
represent the reliability of the function.

IV. SIMULATED & EXPERIMENTAL EVALUATIONS

We apply the KNAF algorithm to the robotic obstacle
avoidance task by training on a variety of environments in
simulation, and then validating the learned policies on a
physical robot.

A. Simulation Results

Building on the infrastructure designed by [20], we train
our algorithm on a wheeled robot traveling through indoor
environments. The robot receives laser scans at a rate of
10 Hz, with 5 range readings at at an angular interval
of 34◦ with a field of view of 170◦. The robot controls
its angular velocity between [−0.3,0.3] rad/s at a rate of
10Hz while traveling with a constant forward velocity 0.15
m/s. While traveling through the environment, the robot
receives a reward of −200 for colliding with obstacles and
a reward of +1 otherwise. The four training environments
pictured in Fig. 1 are Maze, Circuit 1, Circuit 2 and Round,
which mimic the appearance of indoor spaces. The Round
environment is simplest of the four environments because of
its radial symmetry. The Circuit 2 environment incorporates
narrow hallways that turn both left and right. The Circuit 1
environment adds multiple tight turns in quick succession.
The Maze environment incorporates all of these features in
a more complex environment.

Individual environment training. We demonstrate the typi-
cal learning progress of Algorithm 1 by reproducing ten trials
of training with the Round environment, and plot training
rewards, model order, and Bellman error in Fig. 2. The
learning progress is extremely reproducible, with average
episode rewards of at least 2000 after 100,000 training steps.
By the end of training, the robot travels for at least 2000
steps before crashing during every episode. Training Bellman
error reliably converges for every trial. The resulting policies
are parsimonious, with a limiting model order of fewer than
250 kernel dictionary elements. Next, we demonstrate the
performance of Alg 1 on the four environments pictured in
Fig. 1 in Table I. All policies achieve zero crashes during
testing. We also observe that the Maze environment required
many more training steps and achieved a larger model order.
We interpret this to mean that the Maze environment is more
varied, and therefore requires a higher coverage of the state
space.



Generalization across environments. We analyze the in-
ability of a single policy to generalize to other environments
in Table II. We observe that policies trained on the Round
environment (Policy 1) could not generalize to other envi-
ronments at all, with an average test reward of −4226. We
observe that all policies were able to successfully navigate
the Round environment with no crashes, most likely due to
its simplicity. The policy trained on the Maze environment
(Policy 2) was able to somewhat generalize to the other three
environments, while none of the other environments could
generalize to the Maze, due to its complexity. Policies trained
on Circuit 1 (Policy 4) and Circuit 2 (Policy 3) completely
failed on the Maze environment, but were able to transfer
somewhat among each other, and to the Round environment.

Dual compositions. We apply the composition algorithm
(Alg. 2) to combine two of the four trained policies to
observe performance on the original two environments and
analyze generalization performance on the remaining envi-
ronments in Fig. II. All controllers composed from Policy 2
(trained on Maze) achieved perfect reward of 1000 on the
difficult Maze environment. Policies composed from Circuit
1 and Circuit 2 were able to achieve positive average rewards
on the Circuit 1 and 2 environments. We observe some
generalization capabilities in the results for the composite
Policy 1/2 (Round and Maze), which performs better in all
four test environments than both of the original policies. The
other dual composite policies were not able to generalize
better than the individual policies.

Composition of multiple policies. We further validate the
composition algorithm (Alg. 2) using every combination of
four trained policies: an additional eleven policies composed
from two, three, and four of the original four policies. The
performance of the composite policies was validated on
the four training environments in Fig. II. Nearly optimal
performance was observed when all four policies (1/2/3/4)
were composed into one, and then tested on all of the four
environments. Two collisions were observed in the Circuit 1
environment, and none in the other three when testing for
1,000 time steps in each environment.

B. Robot Results

The real-world validation experiments were carried out on
a Scarab robot pictured in Fig. 3, equipped with an on-board
computer, wireless communication, and a Hokuyo URG laser
range finder. It is actuated by stepper motors and its physical
dimensions are 30 x 28 x 20 cm with a mass of 8kg [21].
Laser scans were received at a rate of 10Hz and 5 range
readings were obtained as in simulation. Angular velocity
commands were issued at 10Hz. The test environment was
built using laboratory furniture and miscellaneous equipment
pictured in Fig. 4. When testing the policy trained only on the
Round environment, we observed 3 collisions, with a total
reward of 397 over 1,000 time steps. Using the composite
policy, which incorporates all 4 policies, no collisions were
observed during 1,000 time steps. In Fig. 5, we visualize
the trajectory obtained by testing the composite policy on

Environment Steps Model Order Loss Rewards
Round 230K 224 2.24 1000
Maze 630K 779 16.04 1000
Circuit 2 280K 467 36.40 1000
Circuit 1 500K 578 47.97 1000

TABLE I: Limiting model complexity, training loss (Bellman
error), and accumulation of rewards over 1,000 testing steps
for each of the four environments. All environments are
solved by the K-NAF algorithm within 700,000 simulation
steps.

Policies / Reward Round Maze Circuit 2 Circuit 1
1 - Round 1000 -11663 -608 -608
2 - Maze 1000 1000 -5 -407
3 - Circuit 2 1000 -11663 1000 196
4 - Circuit 1 1000 -11462 -407 1000
1 / 2 1000 1000 -5 -206
1 / 3 1000 -11663 799 -206
1 / 4 1000 -11261 -206 799
2 / 3 1000 1000 1000 -5
2 / 4 1000 1000 -5 799
3 / 4 1000 -11462 397 397
1 / 2 / 3 1000 1000 799 196
1 / 2 / 4 1000 1000 -5 1000
1 / 3 / 4 1000 -11663 397 799
2 / 3 / 4 1000 1000 799 -206
1 / 2 / 3 / 4 1000 1000 1000 598

TABLE II: Cross-validation was performed on all possible
compositions of the original 4 policies, each of which was
trained on one environment pictured in Fig. 1. Each row
is a policy composed using Alg 2 of one or more policies
trained using Algorithm 1. All 15 policies were tested on
the 4 environments, and compared based on the reward
accumulated over 1,000 time steps in each environment.

the Scarab robot, which shows that the robot successfully
completed multiple loops around the obstacles in the envi-
ronment.

V. CONCLUSIONS & FUTURE WORK

We envision multi-robot systems which can exchange con-
cise representations of their knowledge to enable distributed
learning and control in complex environments with limited
communication [22]. In this work, we take the first step
towards this goal by developing and demonstrating the Q-
Learning with KNAF algorithm, which allows the composi-
tion of multiple learned policies without additional training
samples. Rather than a single robot collecting information
about multiple environments in sequence, multiple robots
could work in parallel and combine their models. We also see
a clear path to extend this approach to higher-dimensional
problems using an auto-encoder to learn policies in an RKHS
based on a feature space representation, rather than directly
in the state space [4].

ACKNOWLEDGMENT

We thank Arbaaz Khan, Brent Schlotfeldt, Dinesh Thakur,
Sikang Liu, and Ty Nguyen for their help with brainstorming
and experimental frameworks.



0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (104)

0

2000

4000

6000

8000

10000

12000
A
ve
ra
ge

E
p
is
od
e
R
ew

ar
d

(a) Average Reward

0 2 4 6 8 10
Training Steps (104)

0

50

100

150

B
el
lm

an
E
rr
or

(b) Average Bellman Error

0 2 4 6 8 10
Training Steps (104)

50

100

150

200

250

M
od
el
O
rd
er

(c) Model Order of Q

Fig. 2: Results of 10 experiments over 100,000 training steps were averaged (black curve) to demonstrate the learning
progress for the robotic obstacle avoidance task with the Round environment. Fig. 2a shows the average reward obtained by
the stochastic policy during training shows that the robot was able to complete 5000 simulation steps without crashing by
the end of training. Fig. 2b shows the Bellman error for training samples converges to a small non-zero value. The model
order of the Q approximation remains under 200 for all ten experiments. The exploration variance Σ was 0.2. Constant
learning rates were used, αt = 0.25, βt = 0.25, ζt = 0.001. L was initialized to L0 = 0.01I. For the KOMP Parameters, we
used a Gaussian kernel with a bandwidth of [0.75,0.75,0.75,0.75,0.75] and a pruning tolerance of εt = 3.0.

Fig. 3: Scarab robot with equipped with an on-board com-
puter, wireless communication, and a Hokuyo URG laser
range finder.

REFERENCES

[1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning, 2016, pp. 1928–1937.

[2] B. Schölkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[3] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsimonious
Online Learning with Kernels via Sparse Projections in Function
Space,” ArXiv e-prints, Dec. 2016.

[4] C. Richter and N. Roy, “Safe visual navigation via deep learning
and novelty detection,” in Proc. of the Robotics: Science and Systems
Conference, 2017.

[5] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
supervised deep reinforcement learning with generalized computation
graphs for robot navigation,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[6] E. Tolstaya, A. Koppel, E. Stump, and A. Ribeiro, “Nonparametric
stochastic compositional gradient descent for q-learning in continuous
markov decision problems,” in American Control Conference, 2018.

Fig. 4: We validate our approach by testing policies trained in
simulation on a real robot in a laboratory environment. The
policy trained only on the Round environment experienced
3 crashes over 1,000 testing steps. The composite 1/2/3/4
policy in Table II, combined from all four policies, received
a reward of 1,000 during 1,000 testing steps, with no crashes.

[7] S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” CoRR, vol. abs/1603.00748,
2016.

[8] K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf,
“Kernel mean embedding of distributions: A review and beyonds,”
arXiv preprint arXiv:1605.09522, 2016.

[9] R. Bellman, “The theory of dynamic programming,” DTIC Document,
Tech. Rep., 1954.

[10] A. Koppel, E. Tolstaya, E. Stump, and A. Ribeiro, “Nonparametric
stochastic compositional gradient descent
for q-learning in continuous markov decision problems,”
IEEE Transactions on Automatic Control (under preparation),
2017. [Online]. Available: https://koppel.bitballoon.com/pubs/
2017 kqlearning report.pdf

[11] D. P. Bertsekas and S. Shreve, Stochastic optimal control: the discrete-
time case, 2004.

[12] L. C. Baird, “Reinforcement learning in continuous time: Advantage
updating,” in Neural Networks, 1994. IEEE World Congress on

https://koppel.bitballoon.com/pubs/2017_kqlearning_report.pdf
https://koppel.bitballoon.com/pubs/2017_kqlearning_report.pdf


Fig. 5: We visualize the trajectory observed when testing the
composite policy (Policy 1/2/3/4) in Table II on the Scarab
robot. Position coordinates were computed through onboard
motor odometry, which results in a small drift in the position.

Computational Intelligence., 1994 IEEE International Conference on,
vol. 4. IEEE, 1994, pp. 2448–2453.

[13] V. Norkin and M. Keyzer, “On stochastic optimization and statisti-
cal learning in reproducing kernel hilbert spaces by support vector
machines (svm),” Informatica, vol. 20, no. 2, pp. 273–292, 2009.

[14] A. Argyriou, C. A. Micchelli, and M. Pontil, “When is there a
representer theorem? vector versus matrix regularizers,” Journal of
Machine Learning Research, vol. 10, no. Nov, pp. 2507–2529, 2009.

[15] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” Journal of
Machine Learning Research, vol. 7, no. Dec, pp. 2651–2667, 2006.

[16] A. Koppel, G. Warnell, E. Stump, P. Stone, and A. Ribeiro, “Breaking
bellman’s curse of dimensionality: Efficient kernel gradient temporal
difference,” arXiv preprint arXiv:1709.04221 (Submitted to TAC Dec.
2017), 2017.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 2018.

[18] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on signal processing, vol. 41, no. 12,
pp. 3397–3415, 1993.

[19] S. J. Sheather and M. C. Jones, “A reliable data-based bandwidth
selection method for kernel density estimation,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 683–690, 1991.

[20] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending
the openai gym for robotics: a toolkit for reinforcement learning using
ros and gazebo,” arXiv preprint arXiv:1608.05742, 2016.

[21] N. Atanasov, J. Le Ny, N. Michael, and G. J. Pappas, “Stochastic
source seeking in complex environments,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
3013–3018.

[22] B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas,
“Anytime planning for decentralized multi-robot active information
gathering,” IEEE Robotics and Automation Letters, 2018.


	Introduction
	Normalized Advantage Functions in RKHS
	Composable Learning in RKHS
	Q-Learning with Kernel Normalized Advantage Functions
	Model Composition

	Simulated & Experimental Evaluations
	 Simulation Results
	Robot Results

	Conclusions & Future Work
	References

