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Robots’ Localization and Planning are Centralized

“Robot Quadrotors Perform James Bond Theme” YouTube
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https://www.youtube.com/watch?v=_sUeGC-8dyk


Large Robot Teams Must Be Decentralized

“Flock of Birds Create Beautiful Shapes in Sky” YouTube
3

Bottlenecks in scaling 
robot teams:

● Coordination
● Control
● Communication

Larger teams can be 
more efficient and 
resilient for:

● Exploration
● Mapping
● Search...

https://www.youtube.com/watch?v=bb9ZTbYGRdc


Each robot in the team...
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Perception Action

Communication

Relationships
=

Graph Edges

…is a node in a graph.



Outline                                
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Defining a Graph Signal
A graph signal                             is defined by 

● The set of node features
●
● The set of edge features and directed adjacency relationships             
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Battaglia ’18

Following the formulation of Battaglia ’18, DeepMind’s Graph Nets framework

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261


Graph Neural Network
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Convolutional NN

CNNs apply filter on 
a grid graph. 

Why not any graph?

The graph filter is a 
decentralized NN

Ribeiro '20

https://gnn.seas.upenn.edu/lectures/


Graph Networks

8

Battaglia ’18

● Each Graph Network block,                 , performs edge & node updates:

https://arxiv.org/abs/1806.01261


Graph Networks

Must be permutation invariant! 
mean, sum, max, softmax....
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or

or

Battaglia ’18
Gama ‘18

● Each Graph Network block,                 , performs edge & node updates:

https://arxiv.org/abs/1806.01261
https://arxiv.org/pdf/1805.00165.pdf


Building an Architecture

One round of graph updates
(a GN Block)
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Battaglia ’18

https://arxiv.org/abs/1806.01261


Building an Architecture

11

V’’ V’’
’

Compare to 3 conv layers of width 3, stride 1!

Battaglia ’18

https://arxiv.org/abs/1806.01261


Architecture
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Encoder

Decoder

Core

Decoder

Core

Decoder

...

Output 
Transform

G

G’

⨉ N

Local operations at 
each edge/node

Graph Network Blocks

Concat.

Weights are common across GN layers!

GN GN GN

Battaglia ’18
Gama ‘18

https://arxiv.org/abs/1806.01261
https://arxiv.org/pdf/1805.00165.pdf


Learning for Control of Teams
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What about distributed learning?
● Composable Learning with Sparse Kernel Representations, Tolstaya et al, 2018 [Slides]

Distributed Execution

● Trained policies use only 
local information

● Synchronization across 
agents not required

Centralized Training

● Observations are centralized
● Imitation learning

○ Centralized expert 
demonstrations

● Reinforcement learning 
○ One reward signal for the team
○ Centralized value function

https://arxiv.org/abs/2103.14474
https://katetolstaya.github.io/files/Composable_Learning_slides.pdf


Robot Teams as Graphs
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Multi-Robot 
Coverage and Exploration using 
Spatial Graph Neural Networks

Ekaterina Tolstaya, James Paulos
Vijay Kumar, Alejandro Ribeiro

Submitted to IROS 2021
15

Paper
Task code
Learning code

https://arxiv.org/pdf/2011.01119.pdf
https://github.com/katetolstaya/gym-flock/tree/experimental
https://github.com/katetolstaya/graph_rl/


Multi-Robot Coverage

Navigate a team of robots to visit points of interest 
in a known map within a time limit

Our approach:

1. Discretize the map to pose coverage as a 
Vehicle Routing Problem (VRP)

2. Generate a dataset of optimal solutions to 
moderate-size VRPs 

➢ Optimizers for VRPs are available, but don’t scale to 
larger maps and teams 

3. Train a GNN controller using imitation learning

https://developers.google.com/optimization/routing


Coverage in a Spatial Graph
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● Capture the structure of the task by imposing a 
graph of waypoint nodes.

● Local aggregations propagate information about 
points of interest to robots.



Coverage in a Spatial Graph

● Capture the structure of the task by imposing a 
graph of waypoint nodes.
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vnode

etask

fenc

ɸ ɸ

ɸ

ɸ

ɸ

fenc fout

...

1,..., K

⍴e→v ⍴e→v

GN GN GN

Action Probability 
per agent, per edge

● Local aggregations propagate information about 
points of interest to robots.



GNN Receptive Field is 10

Locality using a Fixed-Size Receptive Field 
● Sparse graph operations use 

DeepMind’s Graph Nets
● Memory ~ O(N+M)

○ For Team Size (N) and Map size (M) 
● Compare to 

○ Routing using dense GNNs (Sykora ‘20) 
○ Exploration via CNNs (Chen ‘19)
○ Selection GNNs (Gama ‘18) that require 

clustering
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Points of interest

Robots

Waypoints

GNN Receptive Field (K)

https://github.com/deepmind/graph_nets
https://proceedings.icml.cc/paper/2020/file/13168e6a2e6c84b4b7de9390c0ef5ec5-Paper.pdf
https://arc.aiaa.org/doi/abs/10.2514/6.2019-0396
https://ieeexplore.ieee.org/abstract/document/8579589


Comparing Receptive Field to Controller Horizon
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Avg. time per episode (ms)

● GNN inference time ~ O(K)
● VRP solver is not parallelized 

(Google OR Tools)

K



Exploration: Coverage on a growing graph

21Points of interest

Waypoints

Robots

Frontiers
GNN learns to use frontier indicators by 

imitating an omniscient expert.

Unexplored 
nodes



Generalization to larger teams & maps

22Zero-shot generalization to a coverage task with 100 robots and 5659 waypoints.



http://www.youtube.com/watch?v=MiYSeENTyoA&t=4


Robot Teams as Graphs
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Learning Decentralized Controllers 
for Robot Swarms 

with Graph Neural Networks

Ekaterina Tolstaya, Fernando Gama, James Paulos, 
George Pappas, Vijay Kumar, Alejandro Ribeiro

Conference on Robot Learning (CoRL) 2019
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Paper
Task Code
Learning Code

http://proceedings.mlr.press/v100/tolstaya20a/tolstaya20a.pdf
https://github.com/katetolstaya/gym-flock
https://github.com/katetolstaya/multiagent_gnn_policies


● Acceleration-controlled robots in 2D
○ Position ri and velocity vi

● Local observations allow agents to:
○ Align velocities
○ Maintain regular spacing

 

Flocking

Communication radius R

Range r ij
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“Stable Flocking of Mobile Agents, Part II: Dynamic Topology”, Tanner ‘03

Existing controller: 

http://web.mit.edu/~jadbabai/www/papers/boids_nonsmooth.pdf


Flocking: What happens when the range is too short?

Local controller allows agents to scatter
(Tanner, 2003)

GNN controller maintains regular 
spacing and aligned velocities

27



● Observations of relative measurements to neighbors.
● Reward based on variance in agent velocities
● Delayed communication only available with immediate neighbors.

28

Flocking with Delayed Communication



Delayed Aggregation Graph Neural Network
● GNN uses delayed multi-hop aggregations to imitate a centralized expert
● Novelty of our approach: 

○ Formalizing inter-agent communication as a multi-hop GNN
○ Modeling communication delays within the GNN

● Implemented using PyTorch
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          Process       using 
     connectivity at time s, 

(one hop delay) (two hop delay)

fout
2D acceleration 

per agent

https://github.com/katetolstaya/multiagent_gnn_policies


Aggregation helps when communication is limited

3-hop Aggregation

Local Sensors

Centralized

30



Aggregation helps when agents move faster

31

3-hop Aggregation

Local Sensors

Centralized



Aggregation GNN with delays and complex dynamics

Microsoft 
AirSim

Point
Masses

32
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Robot Teams as Graphs
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Learning Connectivity in
Distributed Robot Teams
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Ekaterina Tolstaya*, Landon Butler*, Daniel Mox,
James Paulos, Vijay Kumar, Alejandro Ribeiro

Submitted to IROS 2021
* Equal contribution
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https://arxiv.org/pdf/2103.05091.pdf
https://github.com/landonbutler/Learning-Connectivity


Data Distribution in a Mobile Robot Team
● Infrastructure to provide each robot with 

up-to-date information about team 
members, their network, and the mission

● Popular approaches for route discovery in 
dynamic mesh networks:

○ Flooding (Williams ‘02)
○ Heuristics to minimize Age of Information, 

network overhead (Tseng ‘02)

37

https://dl.acm.org/doi/10.1145/513800.513825
https://link.springer.com/article/10.1023/A:1013763825347


2-way Protocol for Data Distribution

1. Each agent evaluates its local 
policy to select one recipient 
or not to transmit. 

0

4

3 2

1



2-way Protocol for Data Distribution

0

4

3 2

1

2. Each recipient sends a 
response back to the sender 
(if successful).



2-way Protocol for Data Distribution

0

4

3 2

1

A transmission or response may 
fail due to interference from 
others.



2-way Protocol for Data Distribution

0

4

3 2

1

Teammates can eavesdrop, 
or use information from 

messages directed to others.



Data Distribution in a Mesh Network
Learn a communication policy 

To minimize the Age of Information

Subject to wireless interference

42

Packet drops determined by the 
Signal to Interference + Noise Ratio



Maintaining Local Data Structures
If an agent receives a message, it updates its local data structure with new data:

43



Connectivity as a Reinforcement Learning Problem

44

● Observation
○ Each agent has access only to its local data structure
○ For a team of N agents, we have N graphs with N nodes each

● Action
○ Each agent chooses 1 next link, or to not communicate

● Reward
○ -1 ⨉ Age of Information, average over all agents, timesteps

○
Agent 0’s Local Data Structure 

at time t=4



Connectivity as a Reinforcement Learning Problem
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● Observation
○ Each agent has access only to its local data structure
○ For a team of N agents, we have N graphs with N nodes each

● Action
○ Each agent chooses 1 next link, or to not communicate

● Reward
○ -1 ⨉ Age of Information, average over all agents, timesteps

● Centralized training via Proximal policy optimization 
(Schulman ‘17)

● Inference can be decentralized since the policy uses 
only local data

○

Agent 0’s Local Data Structure 
at time t=4

https://arxiv.org/pdf/1707.06347.pdf


Graph Neural Network Architecture
● Value and policy models are parametrized as GNNs
● Implemented using DeepMind’s Graph Nets in TensorFlow

GN, fdec, fenc 3 layer MLP with 64 hidden units 46

vnode

ecomm

fenc

ɸ ɸ

ɸ

ɸ

ɸ

fenc

fout

...

1,..., K

⍴e→v ⍴e→v

Policy:
N Action Prob. per agent

Value Function:
Sum of 1 value per node

GN GN GN

https://github.com/deepmind/graph_nets


GNN Receptive Field
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Stationary agents

Existing approaches:
● Round Robin, 

Miao 2016
● Minimum Spanning 

Tree (MST), 
Tseng ‘02

● Random flooding, 
Williams ‘02

Inference time ~ O(K), where 
K is the receptive field of the 
GNN

K

https://www.cambridge.org/core/books/fundamentals-of-mobile-data-networks/D46688899BDC64F4421967A916548433
https://link.springer.com/article/10.1023/A:1013763825347
https://dl.acm.org/doi/10.1145/513800.513825


Generalization to Large Mobile Teams
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GNN Trained on 40 Agents (Generalization)
GNN Trained on Each Task

Memory for centralized training scales with O(N2), where N is number of agents.

GNN trained on 
40 agents



Flocking (Revisited)
We implement the decentralized controller with 
delayed information provided by the data 
distribution algorithm:

Which reward function is more informative for 
training the communication policy?

● Age of Information?
● Variance in Velocities?
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j ∈ Mi



Age of Information Reward

50



51

Network Interference Agent 0’s Buffer Tree
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Network Interference Agent 0’s Buffer Tree



Graph Neural Networks for Scalable Robot Teams
● Graph Neural Networks enable scalable controllers for coordination, control and 

communication.
● Centralized training and distributed deployment is an effective tool for scalability 

to large teams.

● Continuing challenges in multi-agent systems
○ Hardware and real-time inference for physical deployments
○ Human-centered systems 
○ Non-cooperative or adversarial tasks 
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Thank you!
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