

Scalable Learning in Distributed Robot Teams

Doctoral Thesis Defense

Ekaterina (Kate) Tolstaya April 21st, 2021

Robots' Localization and Planning are Centralized

Large Robot Teams Must Be Decentralized

Bottlenecks in scaling robot teams:

- Coordination
- Control
- Communication

Larger teams can be more efficient and resilient for:

- Exploration
- Mapping
- Search...

Each robot in the team...

...is a node in a graph. 4

Outline

Learning to Coordinate

Learning to Control

5

Defining a Graph Signal

A graph signal $\mathcal{G}=(E,V)$ is defined by

• The set of node features

$$V = \{\mathbf{v}_i\}_{i=1:N^v}$$

• The set of edge features and directed adjacency relationships

Following the formulation of <u>Battaglia '18</u>, DeepMind's Graph Nets framework

Convolutional NN

Graph Neural Network

CNNs apply filter on a *grid* graph.

Why not any graph?

Graph Networks

• Each **Graph Network** block, GN(E, V), performs edge & node updates:

(a) Edge update

(b) Node update

aggregation from edge to vertex

per-node update

$$\mathbf{e}'_{k} = \phi^{e}(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}) \quad := f^{e}(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}})$$
$$\bar{\mathbf{e}}'_{i} = \rho^{e \to v}(E'_{i})$$

 $\mathbf{v}'_i = \boldsymbol{\phi}^{\nu}(\bar{\mathbf{e}}'_i, \mathbf{v}_i) \qquad \qquad := f^{\nu}(\bar{\mathbf{e}}'_i, \mathbf{v}_i)$

Graph Networks

• Each **Graph Network** block, GN(E, V), performs edge & node updates:

Building an Architecture

One round of graph updates (a GN Block)

Building an Architecture

Compare to 3 conv layers of width 3, stride 1!

Architecture

$$\mathcal{G}' = f_{\text{out}}\Big([f_{\text{dec}}(f_{\text{enc}}(\mathcal{G})), f_{\text{dec}}(GN(f_{\text{enc}}(\mathcal{G}))), f_{\text{dec}}(GN(GN(f_{\text{enc}}(\mathcal{G})))), \dots] \Big)$$

12

Learning for Control of Teams

Centralized Training

Distributed Execution

- Observations are centralized
- Imitation learning
 - Centralized expert demonstrations

Reinforcement learning

- One reward signal for the team
- Centralized value function

- Trained policies use only local information
- Synchronization across agents not required

What about distributed learning?

• Composable Learning with Sparse Kernel Representations, <u>Tolstaya et al, 2018 [Slides]</u>

Robot Teams as Graphs

Learning to Coordinate

Learning to Control

Multi-Robot Coverage and Exploration using Spatial Graph Neural Networks

Ekaterina Tolstaya, James Paulos Vijay Kumar, Alejandro Ribeiro

Paper Task code Learning code

Submitted to IROS 2021

Multi-Robot Coverage

Navigate a team of robots to visit points of interest in a known map within a time limit

Our approach:

- 1. Discretize the map to pose coverage as a *Vehicle Routing Problem (VRP)*
- 2. Generate a dataset of optimal solutions to moderate-size VRPs
- Optimizers for VRPs are <u>available</u>, but don't scale to larger maps and teams
- 3. Train a GNN controller using imitation learning

Coverage in a Spatial Graph

- Capture the structure of the task by *imposing* a graph of waypoint nodes.
- Local aggregations propagate information about points of interest to robots.

Coverage in a Spatial Graph

- Capture the structure of the task by *imposing* a graph of waypoint nodes.
- Local aggregations propagate information about points of interest to robots.

Locality using a Fixed-Size Receptive Field

- Sparse graph operations use <u>DeepMind's Graph Nets</u>
- Memory ~ O(N+M)
 - For Team Size (N) and Map size (M)
- Compare to
 - Routing using dense GNNs (<u>Sykora '20</u>)
 - Exploration via CNNs (<u>Chen '19</u>)
 - Selection GNNs (<u>Gama '18</u>) that require clustering
 - Robots
 - Points of interest
 - Waypoints
 - GNN Receptive Field

Comparing Receptive Field to Controller Horizon

• VRP solver is not parallelized (Google OR Tools)

Avg. time per episode (ms)

		Receptive Field	
Policy	K=9	K=19	∞
Expert	13500	23 500	2330
GN-MLP	176	277	-
GN-Linear	133	171	-
Greedy	86.3	142	297

Exploration: Coverage on a growing graph

Generalization to larger teams & maps

Zero-shot generalization to a coverage task with 100 robots and 5659 waypoints.

Robot Teams as Graphs

1) Coverage

<u>Tolstaya et al.</u> IROS '21 (submitted)

2) Flocking

Tolstaya et al. CoRL '19

3) Data Distribution

Tolstaya et al. IROS '21 (submitted)

Learning to Coordinate

Learning to Control

Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks

Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar, Alejandro Ribeiro

Conference on Robot Learning (CoRL) 2019

Flocking

- Acceleration-controlled robots in 2D
 - Position r and velocity v
- Local observations allow agents to:
 - Align velocities
 - Maintain regular spacing

Existing controller:

$$u_i = -\sum_{j \in \mathcal{N}_i} (v_i - v_j) - \sum_{j \in \mathcal{N}_i} \nabla_{r_i} U_{ij}$$

"Stable Flocking of Mobile Agents, Part II: Dynamic Topology", Tanner '03

Flocking: What happens when the range is too short?

Flocking with Delayed Communication

- Observations of relative measurements to neighbors.
- Reward based on variance in agent velocities
- Delayed communication only available with immediate neighbors.

Delayed Aggregation Graph Neural Network

- GNN uses delayed multi-hop aggregations to imitate a centralized expert
- Novelty of our approach:
 - Formalizing inter-agent communication as a multi-hop GNN
 - Modeling communication delays within the GNN
- Implemented using PyTorch

Process V_t using connectivity at time s, E_s $GN_s(\mathcal{G}_t) := GN(\{E_s, V_t\})$

$$G'_{t} = f_{\text{out}} \left(\begin{bmatrix} GN_{\text{obs}}(\mathcal{G}_{t}), & GN_{t-1}(GN_{\text{obs}}(\mathcal{G}_{t-1})), & GN_{t-1}(GN_{t-2}(GN_{\text{obs}}(\mathcal{G}_{t-2}))), & \dots \end{bmatrix} \right)$$

Aggregation helps when communication is limited

30

Aggregation helps when agents move faster

31

Aggregation GNN with delays and complex dynamics

Microsoft AirSim

Collisione 14 with Dramc34 - Child B Collision Count® requestAp/Control was surcessibil Vehicle is already armed

Initial Velocity = 3.6 m/s

-

0.5

* * * *

10

4

46

.

-

.

.

1.0

-

100

.

100

10

.

.

.

+

Collision of with Drowell - Objid 0 Collision Count 3 request/spControl was successful -Valida is already arreed

HR.

82

91

100

* *

34

-

Initial Velocity = 3,6 m/s

×.

#

18

*

*

1

3

10

1

100

÷.

12

1

4-hop GNN aligns velocities & maintains spacing! Success!

41

*

-

10

33

-

Robot Teams as Graphs

Learning to Coordinate

Learning to Control

Learning to Communicate 35

Learning Connectivity in Distributed Robot Teams

Ekaterina Tolstaya*, Landon Butler*, Daniel Mox, James Paulos, Vijay Kumar, Alejandro Ribeiro

Submitted to IROS 2021

* Equal contribution

Data Distribution in a Mobile Robot Team

• Infrastructure to provide each robot with up-to-date information about team members, their network, and the mission

- Popular approaches for route discovery in dynamic mesh networks:
 - Flooding (<u>Williams '02</u>)
 - Heuristics to minimize Age of Information, network overhead (<u>Tseng '02</u>)

Each agent evaluates its local 1. policy to select one recipient 0 or not to transmit. 4 Ι 3 2

A transmission or response may fail due to **interference** from others.

Teammates can **eavesdrop**, or use information from messages directed to others.

Data Distribution in a Mesh Network

Learn a communication policy

To minimize the **Age of Information** min \mathbb{E}

$$\min_{\pi} \mathbb{E}_{t \in \mathcal{T}, i \in \mathcal{A}, \mathbf{x}_{t}^{i} \in \mathcal{X}} \left[t - T_{t}^{i, j} \right]$$

Subject to wireless interference

Packet drops determined by the Signal to Interference + Noise Ratio

$$\Gamma_t^{i,j} = rac{
ho_t^i \cdot g_t^{i,j}}{\sigma + \sum\limits_{k \in \mathcal{A} ackslash i}
ho_t^k \cdot g_t^{k,j}}$$

42

Maintaining Local Data Structures

If an agent receives a message, it updates its local data structure with new data:

Agent 0's Local Data Structure				
ID	TS	State	Parent	LC
0	4	$M_{4}^{0,0}$		
1	2	$M_4^{0,1}$	0	3
2	2	$M_4^{0,2}$	3	
3	4	$M_4^{0,3}$	0	
4	3	$M_{4}^{0,4}$	3	1

Tree Representation of Agent 0's Local Data Structure at t = 4

$$T_t^{i,k} < T_t^{j,k} \Longrightarrow (T_t^{i,k} = T_t^{j,k}) \land (M_t^{i,k} = M_t^{j,k}) \land (P_t^{i,k} = P_t^{j,k})$$
$$\forall i,k \in \mathcal{A}, j \in R_t^i$$

Connectivity as a Reinforcement Learning Problem

- Observation
 - Each agent has access only to its local data structure
 - For a team of N agents, we have N graphs with N nodes each
- Action
 - Each agent chooses 1 next link, or to not communicate
- Reward
 - -1 × Age of Information, average over all agents, timesteps

Age	Agent 0's Local Data Structure *			
ID	TS	State	Parent	LC
0	4	$M_{4}^{0,0}$		
1	2	$M_4^{0,1}$	0	3
2	2	$M_4^{0,2}$	3	
3	4	$M_4^{0,3}$	0	~
4	3	$M_4^{0,4}$	3	1

Agent 0's Local Data Structure at time t=4

Connectivity as a Reinforcement Learning Problem

- Observation
 - Each agent has access only to its local data structure
 - For a team of N agents, we have N graphs with N nodes each
- Action
 - Each agent chooses 1 next link, or to not communicate
- Reward
 - \circ -1 × Age of Information, average over all agents, timesteps
- Centralized training via Proximal policy optimization (<u>Schulman '17</u>)
- Inference can be decentralized since the policy uses only local data

ID	TS	State	Parent	LC
0	4	$M_{4}^{0,0}$		
1	2	$M_4^{0,1}$	0	3
2	2	$M_4^{0,2}$	3	
3	4	$M_4^{0,3}$	0	
4	3	$M_{4}^{0,4}$	3	1

Agent 0's Local Data Structure at time t=4

Graph Neural Network Architecture

- Value and policy models are parametrized as GNNs
- Implemented using <u>DeepMind's Graph Nets</u> in TensorFlow

 $\mathcal{G}' = f_{\text{out}}\Big([f_{\text{dec}}(f_{\text{enc}}(\mathcal{G})), f_{\text{dec}}(GN(f_{\text{enc}}(\mathcal{G}))), f_{\text{dec}}(GN(GN(f_{\text{enc}}(\mathcal{G})))), \dots] \Big)$

GN, f_{dec} , f_{enc} 3 layer MLP with 64 hidden units

GNN Receptive Field

Stationary agents

Existing approaches:

- Round Robin, <u>Miao 2016</u>
- Minimum Spanning Tree (MST), <u>Tseng '02</u>
- Random flooding, <u>Williams '02</u>

Inference time $\sim O(K)$, where K is the receptive field of the GNN

Generalization to Large Mobile Teams

Memory for centralized training scales with $O(N^2)$, where N is number of agents.

Flocking (Revisited)

We implement the decentralized controller with delayed information provided by the data distribution algorithm:

$$u_i = -\sum_{j \in M_i} (v_i - v_j)$$

Which reward function is more informative for training the communication policy?

- Age of Information?
- Variance in Velocities?

Age of Information Reward

50

Graph Neural Networks for Scalable Robot Teams

- Graph Neural Networks enable scalable controllers for coordination, control and communication.
- Centralized training and distributed deployment is an effective tool for scalability to large teams.

- Continuing challenges in multi-agent systems
 - Hardware and real-time inference for physical deployments
 - Human-centered systems
 - Non-cooperative or adversarial tasks

Thank you!

