# Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks

Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar, Alejandro Ribeiro

### Motivation

Enable distributed controllers for large networks of mobile robots with interacting dynamics and sparsely available communications



Learn local controllers that require only local

## **Flocking Formulation**

- Flocking in a team of robots:
  - $\Rightarrow$  Aligned robot velocities  $\mathbf{v}_i$ ,
  - $\Rightarrow$  Regular inter-robot spacing  $\mathbf{r}_{ij}$
- Acceleration-controlled discrete-time dynamics in 2D with  $T_s = 0.01$  s
- ► Positions,  $\mathbf{r}_{i,n+1} = \mathbf{r}_{i,n} + T_s \mathbf{v}_{i,n} + 0.5 T_s^2 \mathbf{u}_{i,n}$
- ► Velocities,  $\mathbf{v}_{i,n+1} = \mathbf{v}_{i,n} + T_s \mathbf{u}_{i,n}$
- ► The cost is the variance in agent velocities



## **Flocking Trajectories**

• The GNN (K = 3) maintains a cohesive flock, while the local controller allows the flock to scatter.



- information and local communications at test time by imitating centralized controllers that use global information at training time
- Learning as the tool of choice for designing approximately optimal behaviors
- Testing in AirSim simulates quadrotors with latency and complex dynamics.
- ► We propose a solution leveraging:
  - $\Rightarrow$  Imitation learning
  - $\Rightarrow$  Offline training
  - $\Rightarrow$  Graph Neural Networks

## **Imitation Learning**

- Given the centralized expert policy  $\pi^*(\mathbf{x}_n)$
- Collect local information history from a k-hop neighborhood of node i :

 $\mathcal{H}_{in} = igcup_{k=0}^{K-1} \left\{ \mathbf{x}_{j(n-k)} : j \in \mathcal{N}_i^k 
ight\}$ 

Learn a decentralized policy by imitating the centralized controller

$$\mathbf{H}^* = \operatorname{argmin} \mathbb{E}^{\pi^*} \Big[ \mathcal{L} \Big( \pi \big( \mathcal{H}_{in}, \mathbf{H} \big), \pi^* (\mathbf{X}_n) \Big) \Big]$$

# Flocking Controllers



Expert: Global controller that relies on communication among all agents:

$$\mathbf{u}_i^* = -\sum_{j=1}^J (\mathbf{v}_i - \mathbf{v}_j) - \sum_{j=1}^J \nabla_{\mathbf{r}_i} U_j$$

**Baseline**: Local controller uses only information from neighbors  $N_i$  of node *i*:

$$\mathbf{u}_{i}^{\dagger} = -\sum_{j \in \mathcal{N}_{i}} (\mathbf{v}_{i} - \mathbf{v}_{j}) - \sum_{j \in \mathcal{N}_{i}} \nabla_{\mathbf{r}_{i}} U_{i}$$

Agents observe neighbors' positions and velocities with no time delay

$$\mathbf{x}_{i,n} = \left[ \sum (\mathbf{v}_{i,n} - \mathbf{v}_{i,n}), \sum \frac{\mathbf{r}_{ij,n}}{\mathbf{u}_{i,n}}, \sum \frac{\mathbf{r}_{ij,n}}{\mathbf{u}_{i,n}} \right]$$

#### (a) Flock positions using the GNN



## **Point Mass Results**

The flock's maximum initial velocities, communication radius, and the number of agents are key parameters affecting the cost.



- In practice, the DAgger algorithm was used for imitation learning
- Aggregate information at nodes through successive averaging using the graph adjacency matrix S, where y<sub>0n</sub> = x<sub>n</sub> :

$$\begin{bmatrix} \mathbf{y}_{kn} \end{bmatrix}_{i} = \begin{bmatrix} \mathbf{S}\mathbf{y}_{k-1(n-1)} \end{bmatrix}_{i} = \sum_{j=1, j \in \mathcal{N}_{in}} \begin{bmatrix} \mathbf{S} \end{bmatrix}_{ij} \begin{bmatrix} \mathbf{y}_{k-1n-1} \end{bmatrix}_{j}$$

Computed using local operations that respect the information structure of the distributed system

# **Delayed Aggregation Graph Neural Network**

We extend aggregation graph neural networks [GGMRL19] to time varying signals and time varying network support.





(a) Local state (K=1)

(b) 1-hop neighborhood (K=2) delayed



# Algorithm 1: Delayed Aggregation GNN at Agent *i*

- 1: **for** n=0,1,..., **do**
- 2: Receive aggregation sequences from neighbors

 $\mathbf{Z}_{j(n-1)} = \left[ \left[ \mathbf{y}_{0(n-1)} \right]_{j}; \left[ \mathbf{y}_{1(n-1)} \right]_{j}; \dots; \left[ \mathbf{y}_{(K-1)(n-1)} \right]_{j} \right]$ 

3: Update aggregation sequence components

$$\begin{bmatrix} \mathbf{y}_{kn} \end{bmatrix}_{i} = \begin{bmatrix} \mathbf{S}_{n} \mathbf{y}_{k(n-1)} \end{bmatrix}_{i} = \sum_{j=1, j \in \mathcal{N}_{in}} \begin{bmatrix} \mathbf{S}_{n} \end{bmatrix}_{ij} \begin{bmatrix} \mathbf{y}_{k(n-1)} \end{bmatrix}_{j}$$

- 4: Observe system state **x**<sub>in</sub>
- 5: Update local aggregation sequence

$$\mathbf{z}_{in} = \begin{bmatrix} \mathbf{x}_{in}^T; \begin{bmatrix} \mathbf{y}_{1n} \end{bmatrix}_i; \dots; \begin{bmatrix} \mathbf{y}_{(K-1)n} \end{bmatrix}_i$$

6: Compute local action using the learned controller

 $\mathbf{u}_{\mathit{in}}=\piig(\mathbf{z}_{\mathit{in}},\mathbf{H}ig)$ 

- 7: Transmit local aggregation sequence  $z_{in}$  to neighbors  $j \in N_{in}$
- 8: end for

# **AirSim Results**





#### by $T_s$



(c) 2-hop neighborhood (K=3) delayed(d) 3-hop neighborhood (K=4) delayedby  $2T_s$ by  $3T_s$ 

We learn a single common local controller which exploits information from distant teammates using only local communication interchanges.





- Four models were trained in AirSim and four on stochastic point masses tuned to the parameters of the simulation, and then all were tested in AirSim.
- Aggregation is most useful for fast-moving agents and small communication ranges.

F. Gama, A. G. Marques, A. Ribeiro, and G. Leus, *Aggregation graph neural networks*, 44th Acoustics, Speech and Signal Processing (ICASSP), IEEE Int. Conf. on (Brighton, UK), IEEE, 12-17 May 2019.

Herbert G Tanner, Ali Jadbabaie, and George J Pappas, Stable flocking of mobile agents part ii: dynamic topology, Decision and Control, 42nd Int. Conf. on, vol. 2, IEEE, 2003, pp. 2016–2021.



