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» Enable distributed controllers for large networks of » Flocking in a team of robots: » The GNN (K = 3) maintains a cohesive flock, while
mobile robots with interacting dynamics and = Aligned robot velocities v;, the local controller allows the flock to scatter.
sparsely available communications — Regular inter-robot spacing r;
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» Given the centralized expert policy 7*(x,) Ui = Z("' Vi) ZVWUU » The flock’s maximum initial velocities,
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