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Motivation

I Enable distributed controllers for large networks of
mobile robots with interacting dynamics and
sparsely available communications

I Learn local controllers that require only local
information and local communications at test time
by imitating centralized controllers that use global
information at training time

I Learning as the tool of choice for designing
approximately optimal behaviors

I Testing in AirSim simulates quadrotors with latency
and complex dynamics.

I We propose a solution leveraging:
⇒ Imitation learning
⇒ Offline training
⇒ Graph Neural Networks

Imitation Learning

I Given the centralized expert policy π∗(xn)
I Collect local information history from a k -hop

neighborhood of node i :

Hin =
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{
xj(n−k) : j ∈ N k

i

}
I Learn a decentralized policy by imitating the

centralized controller
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H

Eπ∗
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)
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)]
I In practice, the DAgger algorithm was used for

imitation learning
I Aggregate information at nodes through

successive averaging using the graph adjacency
matrix S, where y0n = xn :[
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I Computed using local operations that respect the
information structure of the distributed system

Delayed Aggregation Graph Neural Network

I We extend aggregation graph neural networks
[GGMRL19] to time varying signals and time
varying network support.

(a) Local state (K=1) (b) 1-hop neighborhood (K=2) delayed
by Ts

(c) 2-hop neighborhood (K=3) delayed
by 2Ts

(d) 3-hop neighborhood (K=4) delayed
by 3Ts

I We learn a single common local controller which
exploits information from distant teammates using
only local communication interchanges.
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Flocking Formulation

I Flocking in a team of robots:
⇒ Aligned robot velocities vi,
⇒ Regular inter-robot spacing rij

I Acceleration-controlled discrete-time dynamics in
2D with Ts = 0.01 s

I Positions, ri ,n+1 = ri ,n + Tsvi ,n + 0.5T 2
s ui ,n

I Velocities, vi ,n+1 = vi ,n + Tsui ,n

I The cost is the variance in agent velocities
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Flocking Controllers

I Communication
range R

I Regulate spacing
among agents,∥∥rij
∥∥2

2, using
pairwise
potentials Uij
[TJP03]

I Expert: Global controller that relies on
communication among all agents:

u∗i = −
J∑

j=1

(vi − vj)−
J∑

j=1

∇riUij

I Baseline: Local controller uses only information
from neighbors Ni of node i :

u†i = −
∑
j∈Ni

(vi − vj)−
∑
j∈Ni

∇riUij

I Agents observe neighbors’ positions and velocities
with no time delay
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Algorithm 1: Delayed Aggregation GNN at Agent i

1: for n=0,1,. . . , do
2: Receive aggregation sequences from neighbors

zj(n−1) =
[[

y0(n−1)
]

j ;
[
y1(n−1)

]
j ; . . . ;

[
y(K−1)(n−1)

]
j

]
3: Update aggregation sequence components[
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4: Observe system state xin
5: Update local aggregation sequence

zin =
[
xT

in ;
[
y1n
]

i ; . . . ;
[
y(K−1)n

]
i

]
6: Compute local action using the learned controller

uin = π
(
zin,H

)
7: Transmit local aggregation sequence zin to

neighbors j ∈ Nin
8: end for

AirSim Results
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Testing in AirSim
Trained: AirSim
Trained: Point-Masses
Global
Local

I Four models were trained in AirSim and four on
stochastic point masses tuned to the parameters of
the simulation, and then all were tested in AirSim.

Flocking Trajectories

I The GNN (K = 3) maintains a cohesive flock, while
the local controller allows the flock to scatter.
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(a) Flock positions using the GNN
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(b) Flock positions using the baseline

Point Mass Results

I The flock’s maximum initial velocities,
communication radius, and the number of agents
are key parameters affecting the cost.
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I Aggregation is most useful for fast-moving agents
and small communication ranges.
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