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Abstract

Scalable Learning in Distributed Robot Teams

Ekaterina Igorevna Tolstaya
Alejandro Ribeiro

Vĳay Kumar

Mobile robots are already in use for mapping, agriculture, entertainment, and the delivery of goods and

people. As robotic systems continue to become more affordable, large numbers of mobile robots may be

deployed concurrently to accomplish tasks faster and more efficiently. Practical deployments of very large

teams will require scalable algorithms to enable the distributed cooperation of autonomous agents. This thesis

focuses on the three main algorithmic obstacles to the scalability of robot teams: coordination, control, and

communication. To address these challenges, we design graph-based abstractions that allow us to apply Graph

Neural Networks (GNNs).

First, a team of robots must continually coordinate to divide up mission requirements among all agents.

We focus on the case studies of exploration and coverage to develop a spatial GNN controller that can

coordinate a team of dozens of agents as they visit thousands of landmarks. A routing problem of this size

is intractable for existing optimization-based approaches. Second, a robot in a team must be able to execute

the trajectory that will accomplish its given sub-task. In large teams with high densities of robots, planning

and execution of safe, collision-free trajectories requires the joint optimization over all agent trajectories,

which may be impractical in large teams. We present two approaches to scalable control: a) a controller for

flocking that uses delayed communication formalized via a GNN; and b) an inverse optimal planning method

that learns from real air traffic data. Third, robot teams may need to operate in harsh environments without

existing communication infrastructure, requiring the formation of ad-hoc networks to exchange information.

Many algorithms for control of multi-robot teams operate under the assumption that low-latency, global state

information necessary to coordinate agent actions can readily be disseminated among the team. Our approach

leverages GNNs to control the connectivity within the ad-hoc network and to provide the data distribution

infrastructure necessary for countless multi-robot algorithms.

Finally, this thesis develops a framework for distributed learning to be used when centralized information

is unavailable during training. Our approach allows robots to train controllers independently and then share

their experiences by composing multiple models represented in a Reproducing Kernel Hilbert Space.
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Chapter 1

Introduction

Mobile robots are already in use for mapping, agriculture, entertainment, and the delivery of goods and people.

As robotic systems continue to become more affordable, multiple robots may be deployed concurrently to

accomplish their joint missions faster or more efficiently. As the complexity of missions is scaled up further,

the deployment of tens or hundreds of robots may be required. Large-scale swarms of robots could be deployed

to provide on-demand wireless networks [4], perform rapid environmental mapping [5, 6], track targets [7],

search after natural disasters [8, 9], or enable sensor coverage in communication-denied environments [10].

At moderate scales, up to a dozen agents, it may be possible to centralize an entire team’s information and

control, but practical deployments of very large teams require distributed execution and scalable algorithms.

This thesis develops the algorithmic tools necessary for a large team of autonomous robots to cooperate

on a joint mission. We focus on autonomous robots that incorporate sensing, control, and communication

capabilities on-board, without relying on a central authority to provide direct mission commands, beyond an

initial specification of the task. We also assume that the team is homogeneous, with all robots having the

same capabilities. Finally, we focus on cooperative applications, with all robots in the team making progress

on a single mission criteria. This thesis focuses on three main algorithmic obstacles to the scalability of robot

teams: coordination, control, and communication:

Coordination. A team of robots deployed to accomplish a mission such as exploration, mapping or search

must coordinate to perform the task efficiently, dividing up the mission requirements among all agents.

Typically, this is accomplished through centralized approaches that jointly optimize over all agents. Such

1



approaches suffer from an exponential increase in complexity with the number of robots and the mission

requirements. Furthermore, due to communication limitations, a central agent may be unable to provide

commands with a high frequency to all members of the team. It has long been known that finding optimal

policies in these distributed settings is challenging [11]. We focus on team coordination for the applications

of coverage and exploration in Part I.

Control. A robot in a team, given a sub-task by a coordinator, must be able to execute a trajectory that

will accomplish this objective. In large teams with high densities of robots, planning and execution of safe,

collision-free trajectories requires the joint optimization over all agent trajectories, which may be impractical

in large teams. We present two approaches for distributed scalable control: a) a controller for flocking that uses

delayed communication formalized via a GNN, presented in Chapter 3; and b) an inverse optimal planning

method that learns from real air traffic data, presented in Chapter 4. Chapter 3 describes the implementation

of a distributed controller that leverages delayed communication to allow agents to avoid collisions and control

their velocities for the task of flocking. Each agent must use their local observations and communication with

nearby peers to determine their next acceleration. Chapter 4 presents a framework that uses inverse optimal

planning to imitate real air-traffic, resulting in the generation of safe and feasible trajectories. The learned

cost functions are interpretable and can be compared to existing standard procedures. Our approaches to the

problems of distributed control and planning are presented in Part II.

Communication. In applications such as search after natural disasters, robot teams may need to operate

in harsh environments without existing communication infrastructure, requiring the formation of ad-hoc

networks to exchange information. Furthermore, agent actions may take them out of direct communication

range with a subset of the team so that packets must be relayed through intermediate nodes to reach their

intended destination. Ad-hoc robot networks are implicitly decentralized. In spite of this, many algorithms for

control of multi-robot teams operate under the assumption that low-latency, global state information necessary

to coordinate agent actions can readily be disseminated among the team. While detail about how this data

distribution task is accomplished is often scarce, its success is vital to the overall performance of the team.

Our approach to the data distribution problem is presented in Part III.

To develop scalable learning architectures for decentralized teams, we focus on designing graph-based

abstractions. We first identify semantic entities such as robots or locations in space as nodes in a graph,

and then we represent the relationships between these entities as edges in the graph. For example, robots’
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communication or control capabilities can be encoded as edges. Such graph-based abstractions allow us

to apply Graph Neural Networks (GNNs), which are information processing architectures that operate on

network data in a local and decentralized way, harnessing useful information through repeated exchanges

along edges of a graph [12]. In this thesis, we develop several GNN architectures that allow for distributed

inference based only on the information local to each robot. Distributed inference is the key capability of

our approach because it allows a large-scale team of autonomous robots to coordinate on a common mission

using only local information for coordination, communication and control.

The first three parts of this thesis develop the tools necessary for distributed control, but they rely on a

centralized training paradigm in which observations from all agents must be obtained simultaneously and the

commands for all agents can also be issued at the same time. This assumption can be unrealistic even at

training time, especially in the presence of communication delays or a huge number of agents. To address

these challenges, Part IV seeks to develop a framework that could enable distributed learning, in which

agents can learn independently and then share their distilled experiences by composing trained controllers.

This framework relies on function approximation in a Reproducing Kernel Hilbert Space (RKHS). Chapter

6 develops a reinforcement learning algorithm that can train a non-parametric function approximation in

an RKHS. Chapter 7 explains how these trained controllers can be combined by examining each function’s

coverage of the input space. We present obstacle avoidance as an example of a application for this framework

and provide real robot experiments to demonstrate the performance of the composed controller. While the

majority of this thesis focuses on the development and application of Graph Neural Networks, the RKHS-

based function parameterization presented in Part IV is not specific to GNNs and may be applied to other

types of models.

A Graph Representations of Robot Teams

In Chapters 2, 3, and 5, we focus on various application of Graph Neural Networks to multi-robot systems.

Graph Neural Networks (GNNs) are an increasingly popular tool for exploiting the known structure of any

relational system [13]. GNNs have been used to learn heuristic solutions to a variety of multi-robot problems,

such as path planning [14, 13, 15], exploration [16], and perimeter defense [17]. Related works in multi-agent

learning for control in imitation [17] and reinforcement [18] settings address varying neighbor relationships
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in communication but provide no mechanism for multi-hop information flow. Explicit multi-hop message

passing between all team members allows offline [19] and incremental [20] training for group inference but

incurs a superlinear growth in communications with team size. Scalable online training is achieved in [21]

by viewing the team as a distributed neural network, but training and inference must cease once agents move

and the network changes.

In this thesis, we represent teams of robots as graphs, with their capabilities encoded as edges in the

graph. We focus on the robots’ abilities to communicate with each other, perceive their environment and act

on entities in their environment, as in Fig. 1.1. For the application of coverage in Chapter 2, we design a

task graph in which edges represent robots’ movement capabilities, and then we apply graph neural networks

to learn decentralized controllers. For the application of flocking in Chapter 3, we use the fixed-range

communication capabilities of robots to generate a time-varying communication graph as agents move. For

the data distribution application in Chapter 5, agents learn to construct the communication graph by balancing

network latency and transmission power. Next, we will now develop the notation and architectures for Graph

Figure 1.1. The capabilities of robots in a team can be encoded as edges in a graph, including the abilities of robots to
communicate with each other, perceive their environment and act on entities in their environment.

Neural Networks (GNNs), the parametric models that can process these graph representations. We provide

two different perspectives on Graph Neural Networks: the signal processing view and the relational view.
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B The Signal Processing Perspective on Graph Neural Networks

Inspired by the development of Convolutional Neural Networks (CNNs) for images, we can define the Graph

Convolution using learnable coefficients that multiply powers of the graph adjacency matrix times the graph

signal [22, 12]. We rely on the graph adjacency matrix to capture the expected similarity between the signal

components expressed at nodes. One powerful advantage of this formulation is that each layer of the GNN

can apply multi-hop operations, which can be compared to using convolutional filters of sizes 2 pixels by 2

pixels or greater. Chapter 3 relies on the approach presented in this section.

Notation. For a matrix A with entries 08 9 we use [A]8 9 = 08 9 to represent its (8, 9)th entry and [A]8 =

[081, . . . , 08# ] to represent its 8th row. For matrices X and Y we use [X,Y] to represent its block column

concatenation and [X; Y] for its block row stacking.

Control of Networked Systems. We consider a team of # agents distributed in space and tasked with

controlling some large scale dynamical process. We characterize this dynamical process by the collection of

state values x8 (C) ∈ R? observed at the locations of each agent 8 at time C, as well as the control actions u8 (C) ∈

R@ that agents take. Grouping local states into the joint system statematrix x(C) = [xT
1 (C); . . . ; xT

#
(C)] ∈ R#×? ,

and local actions into the overall system action u(C) = [uT
1 (C); . . . ; uT

#
(C)] ∈ R#×@ , we can write the evolution

of the dynamical process through a differential equation of the form, ¤x(C) = 5 (x(C), u(C)).

In order to design a controller for this dynamical system we operate in discrete time by introducing a

sampling time )B and a discrete time index =. We define x= = x(=)B) as the discrete time state and u= as the

control action held from time =)B until time (= + 1))B . Solving the differential equation between times =)B

and (= + 1))B , we end up with the discrete dynamical system

x=+1 =

∫ (=+1))B

=)B

5 (x(C), u=) 3C + x=, with x(=)B) = x=. (1.1)

At each point in (discrete) time, we consider a cost function 2(x=, u=). The objective of the control system is to

choose actions u= that reduce the accumulated cost
∑∞
==0 2(x=, u=). When the collection of state observations

x= = [xT
1=; . . . ; xT

#=
] is available at a central location it is possible for us to consider centralized policies c that

choose control actions u= = c(x=) that depend on global information. In this case, the optimal policy is the

one that minimizes the expected long term cost. If the dynamics in 5 (x(C), u(C)) and the costs 2
(
x=, c(x=)

)
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are known, as we assume here, there are several techniques to find the optimal policy c∗ [23, 24]. In this work,

we are interested in decentralized controllers that operate without access to global information and interpret

the optimal controller as a benchmark that decentralized controllers are trying to imitate.

The agent network is described by the presence of an edge (8, 9) ∈ E= which indicates that 9 may send data

to 8 at time =. When this happens we say that 9 is a neighbor of 8 and define the neighborhood of 8 at time = as

the collection of all its neighbors, N8= = { 9 : (8, 9) ∈ E=}. We can also define multi-hop neighborhoods of a

node. We first define the 0-hop neighborhood of 8 to be the node itself, N 0
8=
= {8}. The 1-hop neighborhood

of 8 is defined as simply the neighborhood of 8, N 1
8=
= N8= We can now define the :-hop neighborhood of 8

as the set of nodes that can reach node 8 in exactly : hops. The :-hop neighbors of 8 are the nodes that are

(: − 1)-hop neighbors at time = − 1 of the neighbors of 8 at time =. This recursive neighborhood definition

characterizes the information that is available to node 8 at time =. This information includes the local state x8=

that can be directly observed by node 8 at time = as well as the value of the state x 9 (=−1) at time (= − 1) for all

nodes 9 that are 1-hop neighbors of 8 at time = since this information can be communicated to node 8. Node

8 can also learn the state x 9 (=−2) of 2-hop neighbors at time = − 2 since that information can be relayed from

neighbors. In general, Eqn. 1.2 defines the information history H8= of node 8 at time = as the collection of

state observations out to a maximal history depth  .

N :
8= =

{
9 ′ ∈ N :−1

9 (=−1) : 9 ∈ N8=

}
, H8= =

 −1⋃
:=0

{
x 9 (=−:) : 9 ∈ N :

8=

}
(1.2)

The decentralized control problemconsists onfinding a policy thatminimizes the long termcost
∑∞
==0 2(x=, u=)

restricted to the information structure in (1.2). This leads to problems in which finding optimal controllers is

famously difficult to solve [11] except in some particularly simple scenarios [25]. This complexity motivates

the introduction of a method that learns tomimic the global controller. Formally, we introduce a parameterized

policy c(H8=,H) that maps local information historiesH8= to local actions u8= = c(H8=,H) as well as a loss

function L(c, c∗) to measure the difference between the optimal centralized policy c∗ and a system where all

agents (locally) execute the (local) policy c(H8=,H). Our goal is to find the tensor of parameter H that solves

the optimization problem

H∗ = argmin
H
Ec

∗
[
L

(
c
(H8=,H

)
, c∗ (x=)

)]
, (1.3)

where we use the notation Ec∗ to emphasize that the distribution of observed states x= over which we compare

6



the policies c
(H8=,H

)
and c∗ (x=) is that of a system that follows the optimal policy c∗. The formulation in

(1.3) is one in which we want to learn a policy c
(H8=,H

)
that mimics c∗ to the extent that this is possible with

the information that is available to each individual node. The success of this effort depends on the appropriate

choice of the parameterization that determines the family of policies c(H8=,H) that can be represented by

different choices of parameters, H. In this work, we advocate the use of an aggregation graph neural network

(Section B of Chapter 1) and demonstrate its applications to the problem of flocking with collision avoidance

(Section A of Chapter 3).

Delayed Aggregation Graph Neural Networks. Aggregation graph neural networks (aggregation GNNs)

are information processing architectures that operate on network data in a completely local and decentralized

way, harnessing all the useful information by repeated exchanges with their neighbors [12]. This makes them

suitable choices for parameterizing the decentralized policy c(H8=,H) in (1.3). However, aggregation GNNs

operate on fixed graph signals defined over a fixed graph support, so in what follows, we extend aggregation

GNNs to operate on time-varying graph processes defined over a time-varying graph support.

The graph support G= is conveniently described by a graph shift operator S= ∈ R#×# which is a matrix

whose element [S=]8 9 can be nonzero only if ( 9 , 8) ∈ E= or if 8 = 9 , respecting the sparsity of the graph

[26, 27, 28]. It follows that S= defines linear, local operations since multiplications with S= can be computed

only with neighboring exchanges. More precisely, recall that [x(=−1) ] 9 = xT
9 (=−1) denotes the state observed

by node 9 at time = − 1 and further distribute the product S=x=−1 so that [S=x=−1]8 is associated with node 8.

Since [S=]8 9 ≠ 0 only if ( 9 , 8) ∈ E= or if 8 = 9 we can write

[
S=x=−1

]
8
=

∑
9=8, 9∈N8=

[
S=

]
8 9

[
x=−1

]
9
. (1.4)

Thus, node 8 can carry its part of the multiplication operation by receiving information from neighboring

nodes. Examples of valid shift operators include weighted and unweighted adjacency matrices as well as

weighted, unweighted, or normalized Laplacians. Aggregation GNNs leverage the locality of (1.4) to build a

sequence of recursive :-hop neighborhood [Eq. (1.2)] aggregations to which a neural network can be applied.

More precisely, consider a sequence of signals y:= ∈ R#×? that we define through the recursion

y:= = S=y(:−1) (=−1) , (1.5)
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with the initialization y0= = x=. If we fix the time = and consider increasing values of : , the recursion in (1.5)

produces a sequence of signals where the first element is y0= = x=, the second element is y1= = S=y0(=−1) =

S=x=−1, and, in general, the :th element is y:= = (S=S=−1 . . . S=−:+1)x=−: . Thus, (1.5) is modeling the

diffusion of the state x=−: through the sequence of time varying networks S=−:+1 through S=. This diffusion

can be alternatively interpreted as an aggregation; at node 8 we can define an aggregation sequence of  

elements as

z8= =
[ [

y0=
]
8
;
[
y1=

]
8
; . . . ;

[
y( −1)=

]
8

]
. (1.6)

The first element of this sequence is [y0=]8 = [x=]8 = xT
8=
which represents the local state of node 8. The second

element of this sequence is [y1=]8 = [S=x=−1]8 which aggregates the states x 9 (=−1) of 1-hop neighboring nodes

9 ∈ N 1
8=

observed at time = − 1 with a weighted average. In fact, this element is precisely the outcome of the

local average shown in (1.4). If we now focus on the third element we see that [y2=]8 = [S=S=−1x=−2]8 is an

average of the states x 9 (=−2) of 2-hop neighbors 9 ∈ N 2
8=

at time = − 2. In general, the : + 1st element of z8=

is [y:=]8 = [S=S=−1 . . . S=−:+1x=−: ]8 which is an average of the states x 9 (=−:) of k-hop neighbors 9 ∈ N :
8=

observed at time = − : . From this explanation we conclude that the sequence z8= is constructed with state

information that is part of the local historyH8= defined in (1.2) and therefore a valid basis for a decentralized

controller. We highlight in equations (1.4) and (1.5) that agents forward the aggregation of their neighbors’

information, rather than a list of neighbors’ states, further along to multi-hop neighbors.

An important property of the aggregation sequence z8= is that it exhibits a regular temporal structure as it

is made up of nested aggregation neighborhoods. This regular structure allows for the application of a regular

convolutional neural network (CNN) [12] of depth !, where for each layer ℓ = 1, . . . , !, we have

z(ℓ)
8=
= f (ℓ) (H(ℓ)z(ℓ−1)

8=
) (1.7)

withf (ℓ) a pointwise nonlinearity andH(ℓ) a bank of small-support filters containing the learnable parameters.

For each node 8, we set z(0)
8=
= z8= and collect the output z(!)

8=
= u8= to be the decentralized control action at

node 8, at time =. We note that the filters H(ℓ) are shared across all nodes.

The aggregation GNN architecture, described in equations (1.5)-(1.7), constitutes a local parameterization

of the policy c(H8=,H) that exploits the network structure and involves communication exchanges only with

neighboring nodes. To learn the parameters for H, we use a training set T consisting of sample trajectories
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(x=, c∗ (x=)) obtained from the global controller u∗= = c∗ (x=). We thus minimize the loss function over this

training set, Eq. (1.3), where u= collects the output u8= = z(!)
8=

of (1.7) at each node 8:

H∗ = argmin
H

∑
(x= , c∗ (x=)) ∈T

L
(
u=, u∗=

)
(1.8)

We note that the policy learned from (1.8) can be extended to any network since the filters H(ℓ) can be applied

independently of S=, facilitating transfer learning. This transfer is enabled by sharing the filter weights

H among nodes at training time. The learned aggregation GNN models are, therefore, network and node

independent. Graph covariance is an advantage for the applications examined in this work, but may not be a

suitable assumption in all problems [29].

(a) y0= (b) y1= (c) y2= (d) y3=

CNN
z8= u8=

(e) Processing at the 8-th node

Figure 1.2. Aggregation graph neural networks perform successive local exchanges between each node and its neighbors.
For each :-hop neighborhood (illustrated by the increasing disks), record y:= (1.5) to build signal z= which exhibits a
regular structure (1.6). Figures 1.2a The value of the state 1.2b One-hop neighborhood 1.2c Two-hop neighborhood 1.2d
Three-hop neighborhood. 1.2e Once the regular time-structure signal z= is obtained, we take each row z8=, representing
the information collected at node 8, and we process it through a CNN to obtain the value of the decentralized controller
u8= at node 8 at time = (1.7).

AggregationGNNEvaluation. Wepresent a detailed algorithm to compute the output of Aggregation GNNs,

see Fig. 1.2. Essentially, each node in the network exchanges information with its neighbors repeatedly,

building sequence z8= (1.6). Since this sequence is a regular sequence (i.e. nearby entries in z8= correspond

to the information aggregated from neighboring nodes), a traditional CNN can be directly applied, and an

output computed. This CNN is applied locally at each node, with parameters shared across all nodes.

More specifically, Algorithm 1 summarizes the inferencemethodology for the aggregation GNN at a single

node of the network. At time =, the agent receive aggregation sequences from its neighbors I 9 (=−1) . Then,
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the agent pools this information from neighbors to form the current aggregation vector I8= which is input to

the learned controller c(z8=,H) to compute the new action u8=. Finally, the agent transmits its aggregation

vector z8= to its current neighbors N8=.

Algorithm 1 Aggregation Graph Neural Network at Agent 8.
for n=0,1,. . . , do

Receive aggregation sequences from 9 ∈ N8= [eq. (1.6)]

z 9 (=−1) =
[ [

y0(=−1)
]
9

;
[
y1(=−1)

]
9

; . . . ;
[
y( −1) (=−1)

]
9

]
Update aggregation sequence components [eq. (1.5) and (1.4)][

y:=
]
8
=

[
S=y: (=−1)

]
8
=

∑
9=1, 9∈N8=

[
S=

]
8 9

[
y: (=−1)

]
9

Observe system state x8=
Update local aggregation sequence [cf. (1.6)]

z8= =
[
xT
8= ;

[
y1=

]
8

; . . . ;
[
y( −1)=

]
8

]
Compute next local action using the learned controller

u8= = c
(
z8=,H

)
Transmit local aggregation sequence z8= to neighbors 9 ∈ N8=

end for

C The Relational Perspective on Graph Neural Networks

In the previous section, we described an architecture that can process arbitrary graph signals whose structure

is described by a given weighted adjacency matrix. Unfortunately, the complexity and diversity of the graph

representation of a robot team often cannot be described by an adjacency matrix that has a single scalar

edge weight for the relationship between each robot or entity. Furthermore, this weighting of edges may

not be known a priori. For machine learning on heterogeneous graph representations, we require a more

rich parametrization that can capture the algorithmic operations necessary for coordination, control and

communication within a robot team.

In this section, we present an architecture that processes the graph as a set of relationships between discrete
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entities in a multi-robot system, a framework first developed by [13]. The relational inductive bias of this

architecture constrains the processing of information to occur only along the edges in the graph, which reduces

the number of trainable parameters, as opposed to using fully connected networks. Furthermore, the prior

of permutation invariance of nodes and edges is encoded in the structure of the aggregation functions that

discard their ordering. These traits of relational architectures allow us to train rich models with non-linear

learnable edge update functions, while preserving the ability of these models to generalize to the larger graphs

that representing larger teams and more complex missions.

As compared to the architecture described in Section B, this formalism can only perform operations on

immediate neighbors in the graph, equivalent to a 1-hop graph filter. This approach is very flexible in that it

allows the application of non-linear graph updates as in 1.12. A linear graph network as in 1.11 is equivalent

to a 1-hop graph filter. Chapters 2 and 5 leverage the approach from Section C.

This framework for Graph Neural Networks presented by DeepMind in [13] is designed to be extremely

flexible and it unifies a variety of architectures, such as Graph Recurrent Neural Networks. In this section,

we present the notation and language provided by the framework, along with our own novel architecture that

is used in Chapters 2 and 5.

Following the approach of [13], the building block of a GNN is the Graph Network Block. Given a graph

signal, G =
{
{e: }, {v8}

}
, one application of the GN block transforms these features into G ′ =

{
{e′
:
}, {v′

8
}
}
:

e′: = q
4 (e: , vA: , vB: ), v′8 = q

E (ē′8 , v8), ē′8 = d
4→E (� ′8 ). (1.9)

Note that this a simplification of the notation used by [13] since we have removed the ability to provide any

inputs that are global to the system. �# (·) is a function of the graph signal G, described by the application

of q4, d4→E and qE in that order to produce the transformed graph signal G ′, with the same connectivity but

new features on the edges and nodes.

The aggregation operation d4→E takes the set of transformed incident edge features � ′
8
= {e′

:
}A:=8 at node

8 and generates the fixed-size latent vector ē′
8
. Aggregations must satisfy a permutation invariance property

since there is no fundamental ordering of edges in a graph. Also, this function must be able to handle graphs

of varying degree, so the mean aggregation is particularly suitable to normalizing the output by the number
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of input edges [30]:

d4→E (� ′8 ) :=
1
|� ′
8
|

∑
e′
:
∈�′
8

e′: . (1.10)

The mean aggregation operation is especially helpful for improving the stability of GNNs with large receptive

fields.

Next, we describe two novel variants of the Aggregation GNN architecture, and also first demonstrated in

our work [31], and also detailed in Chapter 2. These two architectures also build upon the Agregation GNN

architecture in [32]. The linear Aggregation GNN architecture uses the following parametrization:

q4! (e: , vA: , vB: ) := vB: , qE! (ē
′
8 , v8) := ē′8 , (1.11)

while the non-linear Aggregation GNN uses learnable non-linear functions to update node and edge features:

q4# (e: , vA: , vB: ) := NN4 ( [e: , vA: , vB: ]), qE# (ē
′
8 , v8) := NNE ( [ē′8 , v8]), (1.12)

where NN4 and NNE are multi-layer perceptrons (MLPs). Note that the linear Aggregation GNN in (1.11)

cannot use the input edge features, unlike the non-linear GNN defined in (1.12). While a Graph Network Block

can be used to compose a variety of architectures, for this work, we develop a variant of the Aggregation GNN

in which the output of every GN stage is concatenated, and finally, processed by a linear output transform 5out

[31, 32].

G ′ = 5out

( [
5dec ( 5enc (G)), 5dec (�# ( 5enc (G))), 5dec (�# (�# ( 5enc (G)))), ...

] )
(1.13)

The addition of the encoder 5enc and decoder 5dec layers was inspired by the Encode-Process-Decode archi-

tecture presented in [13]. Finally, 5out is a function that reduces the high-dimensional latent space vectors

to the required low-dimensional output, such as 2D acceleration or logits of a Boltzmann distribution. The

number of �# operations is a hyper parameter and determines the receptive field of the architecture, or how

far information can travel along edges in the graph.
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Figure 1.3. The Aggregation GNN architecture with �8 as the input graph signal and �> as the output graph signal.
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Part I

Coordination for Exploration and

Coverage
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Chapter 2

Coverage using Spatial Graph Neural Networks

Large scale swarms of robots could be deployed to provide on-demand wireless networks [4], perform rapid

environmental mapping [5, 6], track targets [7], or search after natural disasters. At moderate scales, it may

be possible to centralize the entire team’s information and control in one agent, but practical deployments of

very large teams require distributed execution and scalable algorithms. In particular, global planning-based

approaches suffer from an exponential increase in complexity as the number of robots and the environment

size increases. This motivates the use of heuristics in general and, as we advocate in this work, the use of

learned heuristics.

Graph neural networks (GNNs) have been used to generate heuristic solutions to a variety of multi-robot

problems, such as path planning [14, 13, 15], exploration [16], and perimeter defense [17]. In large teams, we

can take advantage of graph equivariance to design abstractions that further speed up learning. In this work,

we focus on the problem of coverage, in which a robot teammust visit a set of locations in an environment [33].

To leverage recent advances in graph neural networks, we encode the task as a graph: the knownmap locations

and team members are graph nodes, and allowed moves are graph edges. This approach allows us to abstract

away the global agent and obstacle locations and to represent all elements of the problem in a single spatial

graph with only local connectivity. Most importantly, the spatial graph representation can describe tasks with

complex spatial constraints, unlike past work that applies GNNs to homogeneous inter-robot communication

graphs [30, 34]. The development of the GNN architecture relies on Section C of Chapter 1.

A moderate-size coverage task with dozens of goals and fewer than ten agents can be solved with existing
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approaches when posed as a vehicle routing problem [35, 36]. We collect a dataset of trajectories generated

using the centralized expert solution and use behavior cloning to train a graph neural network controller to

imitate the expert solution. This learned heuristic can then generalize to previously unseen coverage scenarios

with more agents and larger maps. We also show generalization to a scenario with simulated quadrotors

that must traverse an environment with thousands of waypoints. Furthermore, we apply this approach to an

exploration task, which is similar to the coverage task but the graph of waypoints is revealed to the robot team

during mission execution. We demonstrate that by imitating an omniscient expert, our learned controller can

outperform both a greedy controller and a receding horizon planner-based controller.

For the applications of coverage and exploration, information about distant points of interest may be

necessary for computing the next position for each robot. To enable the learned controllers to use distant

information, we build graph neural networks with a larger number of graph operation layers, up to 19 layers.

The number of graph operation layers determines the distance along which information can travel from one

node to another along the edges in the graph, the receptive field of the architecture. Other applications of

GNNs to robot teams typically use receptive fields of 2 to 4 in conjunction with dense adjacency matrices

[16, 34, 30, 37], with the exception of the shortest path demonstration in [13] with a receptive field of 10. A

mean aggregation operation helps stabilize training of GNNs with larger receptive fields. Furthermore, we

use a sparse representation of the local connectivity of the graph that allows our approach to scale to larger

maps and teams than [37].

This chapter contributes methods and experimental validations for: (1) An approach to encoding con-

tinuous space multi-robot coverage and exploration problem data as a discrete spatial graph in which robots

and points of interest are nodes and allowed moves are edges. (2) A training methodology using behavior

cloning with an optimization based VRP expert solution for the coverage problem, as well as an extension to

exploration with partially observable states. (3) A graph neural network architecture which explicitly respects

equivariance in the task structure in order to achieve zero shot generalization to large maps and large teams

for which an expert demonstration is intractable.

This chapter has been published as [31]. An open-source implementation of our work can be found at

https://github.com/katetolstaya/graph_rl. A video demonstration is available at https:

//youtu.be/MiYSeENTyoA.
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(a) A city simulated in Unity. (b) The graph representation of the task. (c) A team of 10 such quadrotors were used.

Figure 2.1. The trained models were tested on a team of robots simulated in Unity and controlled by waypoint commands
issued through a Robot Operating System interface. The trained model allows the robots to divide and conquer to visit
the points of interest more efficiently than a greedy model.

A Multi-Robot Routing for the Coverage Problem

We consider the time-constrained coverage path planning problem in which a team of robots must maximize

the visited region of interest within a given time limit [33]. The problem of searching over the set of all

feasible trajectories is intractable, so we finely discretize the region of interest, motivated by the success of

motion planning in lattices [38]. In practice, a coarse map of a region may be provided via satellite imagery.

To generate the lattice representation, we initialize a grid of points with a spacing of 5 meters, and then remove

all points that are within an obstacle in the mission environment pictured in Fig. 2.1, and then add connections

between adjacent nodes in free space.

We denote the set of robots asR, waypoints asW , and unvisited waypoints of interest denoted as X . The

set of unvisited waypoints of interest is a subset of all waypoints, X ⊆ W . Next, we define the parameters

that describe the map of the environment: ? 9 is the location of waypoint 9 , and N 9 is the set of neighboring

waypoints to waypoint 9 . Then, we define the mission: G 9C ∈ {0, 1} is an indicator of whether the waypoint 9

is of interest at time C, with G 9C = 1 if 9 ∈ X . ) denotes the time budget for the mission. The location of robot

8 at time C is @8C and 1@8C=? 9 indicates whether robot 8 is currently at waypoint 9 . The multi-robot coverage

17



problem can now be formulated as:

max
{@8C }8∈R

)∑
C=0

∑
9∈W

∑
8∈R

G
9
C 1@8C=?

9 (2.1)

s.t. G 9C = G
9

0

∏
8∈R

C−1∏
B=0
(1 − 1@8B=? 9 ), ∀ 9 ∈ W , C ≤ )

@8C−1 = ?
9 , @8C = ?

: ⇒ : ∈ N 9 , ∀8 ∈ R,∀ 9 , : ∈ W , C ≤ ).

Alternate formulations exist that can pose the coverage problem as a Vehicle Routing Problem (VRP) to be

solved as a mixed-integer program [39]. For a given problem instance, we can use existing routing solvers

such as [36] to generate open loop solutions. Other approaches to the coverage problem typically pre-compute

the roles and trajectories of all team members for the duration of the mission [33].

In contrast, our goal is to develop a closed-loop controller that computes only the next action for each

robot based on the current state of the system. This approach generalizes easily to systems with real dynamics

in which agents may not instantaneously transition between desired waypoints, such as the team of simulated

robots in Fig. 2.1. It also enables generalization to dynamic graphs, permitting us to extend the coverage

problem to an exploration problem in which new waypoints are discovered online during execution. We seek

to learn a closed loop controller, c, that maximizes the observed waypoints in expectation over the set of

initial states and maps:

max
c

E
@80 , ?

9 ,G
9

0

)∑
C=0

∑
9∈W

∑
8∈R

G
9
C 1@8C=?

9 (2.2)

s.t. G 9C = G
9

0

∏
8∈R

C−1∏
B=0
(1 − 1@8B=? 9 ), ∀ 9 ∈ W , C ≤ )

@8C−1 = ?
9 , @8C = ?

: ⇒ : ∈ N 9 , ∀8 ∈ R,∀ 9 , : ∈ W , C ≤ )

{@8C }8∈R = c

(
{@8C−1}8∈R, {G

9

C−1} 9∈W , {?
9 } 9∈W

)
.

B Methods

To solve the problem of multi-robot coverage, we develop a parametrization of the problem as a heterogeneous

graph that can be input to a Graph Neural Network to be trained via supervised learning.
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Figure 2.2. Robots and waypoints comprise the nodes in the graph, with the edges between them indicating the ability of
robots to move to new locations.

Graph Representations for Coverage. We develop a parametrization of the current system state in which

all entities, including robots and waypoints, are part of a single computation graph. Each robot in the team is

considered as a node in the graph and robots are allowed to move from waypoint to waypoint in discrete steps.

Due to robots’ movement, the graph topology changes during execution. Using the lattice representation,

we can abstract away the global positions of the robots, and maintain only relative information of nearby

waypoints and robots. Unlike [16], we do not need to provide the relative distances of all waypoints to all

agents. Furthermore, the action space of each robot is now discrete: the robot chooses one nearby waypoint

to move to.

There are two types of edges: 1) map edges between waypoints to indicate free space and 2) action edges

between robots and waypoints that indicate a robot’s capability to move to nearby locations. Both types of

edges are undirected. The waypoint connectivity is defined by the lattice induced over the given map of

obstacles and free space. A robot is connected to the same waypoints as the waypoint at its current location,

if @8 = ? 9 , then N8 = N 9 .

The feature vector for each node v8 of index 8 indicates the type of this node:

v8 = {18∈R,18∈W ,18∈X }, (2.3)

where 1 is an indicator function.

We define e: as an edge feature vector for the directed edge of index : , with a sender node B: and a
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Figure 2.3. The receptive field (K=10) of a Graph Neural Network.

receiver node A: . For this task, we define e: to be the distance between the positions of nodes B: and A: :

e: = ‖?B: − ?A: ‖. (2.4)

The set of all edge features is � = {e: }, and the set of vertex features is+ = {v8}, and we denote the graph

that represents the state of the entire system as � = {�,+}. At a given time C, the state of the multi-robot task

is described by �C .

Graph Representations for Exploration. We view the exploration problem as the problem of coverage on a

growing graph. Waypoint nodes are added to the graph when they are observed by a range sensor with range

(: if ‖?8C − @
9
C ‖ ≤ (, then WC+1 = WC ∪ {?8}, with the set of waypoints growing over time. Exploration

introduces the possibility that an observed waypoint may or may not have adjacent waypoints that are currently

unexplored. We call these frontier nodes and add an indicator feature to indicate whether a waypoint is part

of the set of frontier nodes, F :

v8 = {18∈R,18∈W ,18∈X ,18∈F }. (2.5)

Policy Architecture. For this application, we use the relational GNN architecture developed in Section C

20



of Chapter 1. We directly compare the linear and the non-linear architectures, developed in 1.11 and 1.12,

respectively. For the non-linear model, the NN4 and NNE are 3 layer MLPs with 16 hidden units. The

architecture is shown in Fig. 1.3, with  indicating the number of aggregation stages in the architecture. The

Core module is a Graph Network block, while the Encoder, Decoder, and Output Transform blocks process

each node and edge attribute independently. For the non-linear model, the learnable parameters of the Core

are shared among aggregation steps, and all learnable parameters are shared over all nodes and edges.

For both the linear and non-linear models, the Encoder encodes the local features of each node and edge

into a larger latent space via a 3 layer MLP with no activation after the final layer. This is in contrast to the

architecture in 3 that uses a hand-engineered feature extractor. The Decoder is also a 3 layer MLP with no

final activation. The Output Transform is a linear layer that transforms the concatenated latent features to an

output of dimension 1 for each node and edge. All layers used latent sizes of 16.

The resulting stochastic control policy is a function of the values output on the edges from each robot node

to neighboring waypoints as shown in 2.2. The edge to move on is chosen using a Boltzmann distribution that

uses a softmax action selection rule.

Fig. 2.3 visualizes a segment of a typical training scenario. Three robots shown in green must visit

red points of interest by traveling along the waypoints in free space indicated by blue nodes and edges. We

visualize the receptive field of a GNN with  = 10 indicating the 10-hop information available to the robot

on the right. A larger receptive field would allow the agent to use information about more distant regions of

the map to compute the controller. A GNN with a receptive field of zero can be compared to the Deep Set

architecture that neglects any relational data [40].

Baseline Controllers. The learned policies are compared to three types of controllers: 1) an expert open

loop VRP solution, 2) a receding horizon VRP-based controller, and 3) a greedy controller. We use Google’s

OR-Tools library [36] to provide optimization-based expert solutions to the VRP. This expert plans once for the

full mission length of) and then this trajectory is executed in an open loop fashion. The expert assumes global

knowledge of the map and may be intractable in larger or dynamic graphs. The training data was generated

with this open-loop approach. We also devise a receding horizon controller that plans for trajectories of

)̂ < ) , and then executes the first step of this trajectory, and then re-plans at the next time step. The Expert

controller baselines use receding horizon control in Figs. 2.4, 2.5, 2.9. Finally, a greedy controller that routes

each robot to the nearest unvisited point of interest is a great heuristic in many scenarios, so we include it as
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a practical lower bound. The greedy controller can be implemented with a finite receptive field using only a

K-step distance matrix between nodes in the graph and we provide this benchmark in Figs. 2.4, 2.5, 2.9. A

limited-horizon greedy controller may be more practical in larger graphs for which computing a full distance

matrix is expensive.

Imitation Learning from Expert Demonstrations. In behavior cloning, our goal is to use stochastic

gradient descent to minimize the difference between the expert’s action and the policy’s output, where L is a

cross-entropy loss, since the action space is discrete:

c∗ = argmin
c

∑
(�C ,uC ) ∈D

L
(
c(�C ), uC

)
. (2.6)

To use behavior cloning to train the graph neural network policy, we require a dataset of expert trajectories.

We collect a dataset of 2000 expert trajectories of length ) = 50 in randomly generated graphs, D =

{(�C , uC )}C=1,...,50. The graphs are generated by sampling regions of 228 waypoints on average from the

graph shown in 2.1. The performance of the learned controller is tested on graphs generated from the same

distribution over trajectories of length ) = 50. The models were trained for 200 epochs with a batch size of

32. Adam optimizer was used with an initial learning rate of 0.001 which was decayed by a factor of 0.95 for

every 200 batches.

For the exploration task, we use the expert controller that uses the full graph to generate the trajectory,

but only the local state observations are stored in the dataset, so the robot is learning to predict what the

omniscient centralized controller would do based only on partial observations of currently explored nodes

and frontiers.

ImplementationDetails. WeuseDeepMind’sGraphNets library and a variant of the Encode-Process-Decode

architecture for the graph neural network policy [13].

We implement a local collision avoidance strategy as part of the task specification. A robot is allowed

to move to a new waypoint if no other robot will be occupying it during the next time steps. Conflicts are

resolved by giving priority to robots of smaller indices. In a real decentralizedmulti-robot team, local collision

avoidance may also be necessary.

Due to the known maximum degree of the map graph, we can fix the number of neighboring waypoints

considered by the policy to be up to 4, so that existing infrastructure for stochastic policies with fixed-size
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action spaces can be used [41]. The output of the learned policy are weights for up to 4 edges from waypoints

to robots, as shown in Fig. 2.2.

C Results

First, we highlight the impact of the Aggregation GNN’s receptive field on its performance on the exploration

and coverage tasks. Next, we examine how the GNN can generalize to larger graphs and team sizes. Finally,

we validate the use of the GNN controllers in a high-fidelity simulator.

Locality. On the coverage task, the learned controllers reliably outperform a greedy controller, but fall short

of the receding-horizon expert in Fig. 2.4. For the GNNs, we see a sharp improvement in performance with

increasing receptive field. The linear and non-linear variants of the aggregation GNNs perform comparably,

with the non-linear GNN performing slightly better. With an increasing horizon, the greedy controller rapidly

reaches its asymptotic mean reward of 70.1 with a standard error of the mean (SEM) of 1.32. The open-loop

expert obtains a mean reward of 91.0 with a SEM of 0.87.

On the exploration task, the learned controllers outperform greedy and the planner-based controllers as

we can see in Fig. 2.5. Existing planning-based solutions cannot weigh the importance of a waypoint at the

frontier versus other waypoints of interest, and we show that a learned solution can improve over a receding

horizon expert controller. We also see a significant improvement in the mean reward obtained by the GNNs

as their receptive field increases. The non-linear GNN is again slightly better than the linear GNN.

We further analyze the effect of a model’s receptive field on its performance in varying size graphs. A finite

receptive field decomposes the problem into local neighborhoods for each robot, producing a decentralized

solution. The robot only uses a fixed-hop neighborhood of the graph for computing the action as seen in

Fig. 2.3. The graph diameter is the max distance between any two nodes in a graph. A model with a

smaller receptive field performs worse than a model with a larger receptive field, especially in graphs of larger

diameter as demonstrated by Fig. 2.8. As the graph size increases, there are more points of interest that

must be visited. The larger receptive field controller is able to route the agents to these waypoints, while the

controller with the smaller receptive field ( = 3) is unable to compute a high-reward path.

While the expert controller outperforms the learned controllers in Fig. 2.4, the VRP-based controller

requires an order of magnitude more time to compute a control action, as seen in Table 2.1. The neural
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Figure 2.4. GNNs with larger receptive fields achieve higher rewards on the coverage task. Mean reward over 100 episodes
with standard error is shown.

Receptive Field
Policy K=9 K=19 ∞
Expert 13 500 23 500 2330
GN-MLP 176 277 -
GN-Linear 133 171 -
Greedy 86.3 142 297

Table 2.1: The average controller computation time per episode in milliseconds, tested over 100 episodes of the coverage
task. The expert controller (Receptive field = ∞) plans one open-loop trajectory for the task given the full adjacency
matrix.

networks used a GTX 1080 GPU and the benchmarks used one core of an Intel Core i9-9900K processor. The

expert and greedy controllers with receptive field of ∞ use the full adjacency matrix and, in particular, the

expert plans one open-loop trajectory of length ) = 50. We observe that the linear GNN has a faster controller

computation time, and controllers with larger receptive fields also need more time.

Transference. The trained GNN models effectively generalize to larger robot team and map sizes. The

models were first trained on 4 agents and 228 waypoints on average. Then, the models were tested on a map

size of 5659 waypoints with a graph diameter of 205. The team size varied from 10 to 100 agents. For

both the coverage and exploration generalization experiments, the map and team sizes made the centralized

expert solution intractable. In Fig. 2.6, we observe that the learned solution consistently outperforms the
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Figure 2.5. GNNs surpass the expert controller on the exploration task. Mean reward over 100 episodes with standard
error is shown.

greedy controller on the coverage task. In Fig. 2.7, this difference is even bigger for the exploration task.

We hypothesize that this is because the learned policy learns to weigh the frontier nodes more than other

unexplored nodes.

Reinforcement Learning. Reinforcement Learning (RL) is also an effective tool for training Aggregation

GNN controllers and achieves comparable performance to imitation learning in Fig. 2.9. RL is especially

important in tasks that do not have suitable expert controllers for generation of training data. We use

the Proximal Policy Optimization algorithm [42] and parametrize both the policy and value functions as

Aggregation GNNs. The policy architecture is the same as for the imitation learning experiments, while

the value function sums over the values output for the robot nodes. The GNN captures the known structure

of the problem for the value and policy functions. The reward is the summation in the objective of (2.2),

with no reward shaping required. The model was trained using 1 × 106 observations using an open source

implementation of PPO from [41] using Adam optimizer with a step size of 1 × 10−4 and a batch size of 40.

Dynamics. Despite training on small-scale teams with instantaneous discrete state transitions, the GNN is

effective for control in a coverage mission with ten quadrotors in a large simulated environment, pictured in

Fig. 2.1. In 400 seconds of mission time, the team of 10 robots visited 490 points of interest using the greedy

controller, as compared to visiting 610 points of interest using the non-linear GNNwith a receptive field of 19.
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Figure 2.6. Generalization to a coverage task with 5659 waypoints. We plot the average reward over 100 episodes with
standard error. The GNN was trained with 4 agents and tested on teams of up to 100.
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Figure 2.7. Generalization to an exploration task with 5659 waypoints. We plot the average reward over 100 episodes
with standard error. The GNN was tested on teams of up to 100.
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Figure 2.8. Effect of receptive field of non-linear GNNs in graphs of varying diameters, as measured by the mean reward
over 20 episodes and standard error.
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Figure 2.9. Comparison of linear GNNs trained with imitation learning and reinforcement learning. Mean reward over
100 episodes with standard error.
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The use of the lattice representation with discrete states allows the model trained on an ideal discrete task to

generalize zero-shot to a high-fidelity simulator. We discretize the robot positions provided by the simulator

by clipping them to each robot’s nearest waypoint. The spatial aggregation operations are invariant to the

time-scale of the task, so we can execute the GNN controller with the non-ideal dynamics of a quadrotor.

D Summary

We develop a scalable GNN architecture for multi-robot coverage and exploration tasks. The approach

surpasses existing decentralized heuristics and also scales well to from team sizes of 4 to teams of up to 100

agents. We also demonstrate that this architecture can be trained via reinforcement learning. As a bridge

to deploying this approach to physical robot teams, we demonstrate generalization to a simulated robot team

subject to dynamics in a dense urban environment.

To deploy the GNN in a real distributed team, we would need to address challenges such as asynchronous

or intermittent communication. One possible solution could be the evaluation of the GNN on the contents of

a robot’s local buffer containing the estimated state of the system, and allowing intermittent communication

among robots to update each other about the current positions of other robots, points of interest, and, for the

exploration task, the growing map of waypoints.
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Part II

Decentralized Control and Planning
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Chapter 3

Flocking using Delayed Aggregation Graph Neu-

ral Networks

Large scale swarms are composed of multiple agents that collaborate to accomplish a task. For as long as

scale is moderate, the group can be controlled as a whole from a central agent. However, as we reach for

larger number of agents, decentralized control becomes a necessity. Individual agents must decide on control

actions that are conducive to accomplishing a collective task from their local observations and communication

with nearby peers. It has long been known that finding optimal controllers in these distributed settings is

challenging [11]. This motivates the use of heuristics in general and, in particular and as we advocate in this

chapter, the use of learned heuristics.

It is germane to emphasize that the challenge in decentralized control stems from the local information

structure generated by the unavoidable restriction to communicate with only nearby agents. Building on

this observation, we propose the use of imitation learning to train policies that respect the local information

structure of a distributed system, while attempting to mimic the global policy of a clairvoyant central agent.

The development of this architecture was provided in Section B of Chapter 1. The value of imitation learning

has been demonstrated in single agent robotics problems such as autonomous driving [43] and quadrotor

navigation [44]. When designing multi-agent systems, we must contend with the dimensionality growth of the

system as new agents are added. Furthermore, it is unreasonable to assume that the network during training

is the same as the network during execution.
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Both of these problems can be overcome if we use Graph Neural Networks [45, 46, 22, 12, 47]. In

particular, aggregation graph neural networks (aggregation GNNs) [12] are especially suited to teams of agents

operating over a physical network because the architecture operates in an entirely local fashion involving only

communication between nearby neighbors. In small-size multi-agent problems [48], it is shown that explicitly

learning the graph of agent relationships aids in distilling decentralized agent policies from expert policies

trained using Actor-Critic methods. In contrast, we leverage known relationships and connectivity between

agents in order to extract features with graph convolutions, following the approach of [12]. Exploiting the

known network structure allows us to consider teams an order of magnitude larger and highlights the value of

using information from multi-hop neighbors.

Related work in multiagent learning for control in imitation [17] and reinforcement [18] settings address

varying neighbor relationships in communication but provide no mechanism for multi-hop information flow.

Explicit multi-hop message passing between all team members allows offline [19] and incremental [20]

training for group inference but incurs a superlinear growth in communications with team size. Scalable

online training is achieved in [21] by viewing the team as a distributed neural network, but training and

inference must cease once agents move and the network changes.

We examine flocking tasks to highlight the ability of our approach to handle dynamic communication

networks. Flocking has natural extensions to transportation and platooning of autonomous vehicles where

agents rely on local observations to align their velocities and regulate their spacing [49]. Previous work focuses

on developing local controllers which incorporate only observations from immediate neighbors [50, 51, 52].

We show that a global controller inspired by [52] outperforms such local controllers, but global approaches

are not practical for real deployments. The novelty of our approach to flocking is to aggregate from multi-hop

neighbors; this ability allows us to approach the performance of global solutions while respecting realistic

communication constraints. Prior to this work, there has been no principled approach for augmenting the

communication between neighbors to pass on information aggregated from multi-hop neighbors.

This chapter has been published as [30]. An open-source implementation of our work can be found at

https://github.com/katetolstaya/multiagent_gnn_policies. A video demonstration

is available at https://youtu.be/Ph-GX0lSKME.
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A Methods: Learning to Flock

We evaluate the proposed methodology by learning a local controller for flocking with collision avoidance

[52]. Following the signal processing-based approach developed in Section B of Chapter 1, we consider a

team of # agents in which r8 denotes the position of agent 8 and v8 = ¤r8 denotes its velocity. We assume

that accelerations are fully controllable and therefore attempt to design control inputs u8 so that the change in

velocity of agent 8 is ¤v8 = u8 . Further denote as r8 9 := r 9 − r8 the relative position of agent 9 with respect to

agent 8 and introduce a constant d > 1 to define the collision avoidance potential

* (r8 , r 9 ) = 1/
r8 92 + log

r8 92 if
r8 9 < d; 1/d2 + log(d2) otherwise. (3.1)

Since in addition to avoid collisions we want all agents to coordinate on their velocities we propose the

controller

u∗8 = −
#∑
9=1
(v8 − v 9 ) −

#∑
9=1
∇r8* (r8 , r 9 ). (3.2)

The combination of the collision avoidance potential with the velocity agreement term v8 − v 9 pushes the

agents to coordinate their velocities while avoiding collisions. Observe that the potential* (r8 , r 9 ) diverges at

‖A8 9 ‖ = 0, has a minimum when the distance between agents is ‖A8 9 ‖ = 1 and is indifferent when ‖A8 9 ‖ > d. It

therefore pushes agents to either be at distance ‖A8 9 ‖ = 1 of each other or at distance ‖A8 9 ‖ > d of each other.

The controller in (3.2) requires access to all agent velocities and all agent positions. In the parlance of

Section B of Chapter 1, it is a clairvoyant centralized controller. In practice, agents can have access to local

information only as they can only sense and communicate with agents within distance ‖r8 9 ‖ < ' of each

other. A controller that respects the locality of sensing and communication is

u†
8
= −

∑
9∈N8
(v8 − v 9 ) −

∑
9∈N8
∇r8* (r8 , r 9 ). (3.3)

The controller in (3.3) differs from the centralized controller in (3.2) in that the sums are over agents 9 ∈ N8

defined as those whose distance to agent 8 is ‖r8 9 ‖ < ' for some communication radius '. For both the

centralized and decentralized controllers, we have chosen ' = d. It follows that the controller in (3.3) is

decentralized as it can be implemented by accessing local information only. The controllers in (3.2) and (3.3)

32



have the same stationary points but (3.3) may indeed, it most often does, take longer to coordinate agent

velocities. Next, we use the aggregation GNN described in Section B of Chapter 1 to learn a local controller

that mimics (3.2). We will show that this learned controller outperforms (3.3) and achieves a performance

that is similar to (3.2).

The global and local controllers are both non-linear in the states of the agents. The classical aggrega-

tion GNN approach described in Section B of Chapter 1 does not allow for non-linear operations prior to

aggregation, so we cannot use the position and velocity vectors alone to imitate the global controller. Rather

than directly using the state [r8 , v8] of each node 8 for aggregation, we design the relevant features needed to

replicate the non-linear controller using only a linear aggregation operation, where [x=]8 ∈ R6:

[x=]8 =
[ ∑
9∈N8
(v8,= − v 9 ,=),

∑
9∈N8

r8 9 ,=r8 9 ,=4 ,
∑
9∈N8

r8 9 ,=r8 9 ,=2

]
(3.4)

This observation vector is then used during aggregation as described in (1.5)-(1.6). The local controller

also requires the computation of (3.4), so we are not giving the GNN an unfair advantage by providing the

instantaneous measurements of neighbors’ states. We quantify the cost of a trajectory by the variance in

velocities, where ) is the number of time steps in the trajectory. The variance in velocities measures how far

the system is from consensus in velocities [53]:

� =
1
#

)∑
==1

#∑
9=1

v 9 ,= − 1
#

[ #∑
8=1

v8,=
]2

. (3.5)

For our baseline scenario we consider a flock of # = 100 agents with a communication radius of

' = d = 1.0 m and a discretization time period of )B = 0.01 s. The flock locations were initialized uniformly

on the disc with radius
√
# to normalize the density of agents for changing flock sizes. Initial agent velocities

are controlled by a parameter E8=8C = 3.0 m/s: agent velocities are sampled uniformly from the interval

[−E8=8C , +E8=8C ] and then a bias for the whole flock is added, also sampled from [−E8=8C , +E8=8C ]. To eliminate

unsolvable cases, configurations are resampled if any agent fails to have at least two neighbors or if agents

begin closer than 0.1 m. Finally, acceleration commands are saturated to the range [−100, 100] m/s2 to

improve the numerical stability of training.

To obtain an estimate of the action to take, each agent operates an aggregation GNN architecture, as
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described in Section B of Chapter 1, with input features given by (3.4). The aggregated vectors z8= in Eq.

(1.6) are built from  − 1 neighbor exchanges, and then fed into a fully connected neural network as per

Eq. (1.7), with two hidden layers of 32 neurons each and a Tanh activation function. The network was

implemented in PyTorch and trained over a MSE cost function, using the Adam optimizer with learning rate

5 ·10−5 and forgetting factors V1 = 0.9 and V2 = 0.999. Each model was trained using 400 trajectories, each of

length 200 steps total. For testing, 20 trajectories of length 200 were observed by using the learned controller

only.

In practice, following the optimal policy to collect training data results in a distribution of states that is not

representative of those seen at test time. To resolve this we use the Dataset Aggregation (DAgger) algorithm

and follow the learner’s policy instead of the expert’s with probability 1−Vwhen collecting training trajectories

[54]. The probability V of choosing the expert action while training is decayed by a factor of 0.993 after each

trajectory to a minimum of 0.5.

B Results

We report results comparing (3.3) and (3.2) for point masses with fully controllable accelerations. This

simple setting allows for an exploration of the effect of different system parameters such as initial velocity or

communication radius, to determine experimentally the scenarios on which the aggregation GNN offers good

performance. We study the case of transfer learning, where we train the model in one network but test it in

another (for example, with different number of agents), and also by exporting the trained architecture to other

physical models beyond the point-mass model, as shown in the AirSim simulator.

Learning to flock with point masses. First, we compare the performance of the GNN controller with  = 3

to the local controller u†
8
(3.3). Figure 3.1a depicts the magnitude of velocity differences between agents over

the course of a trajectory in terms of the population mean and standard devision. The GNN converges much

more rapidly and, unlike the local controller, approaches a perfect velocity consensus. Part of the reason for

this is explained in Figure 3.1b, which plots agents’ minimum distance to any neighbor over time. The GNN

control approaches a uniform flock spacing, but the local controller fails to stop agents from dispersing quickly

enough. Soon the local controller’s network has become completely disconnected as agent distances exceed

their communication range of ' = 1. One flock trajectory is depicted for the GNN controller in Fig. 3.1c and
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(c) Flock positions using the GNN
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(d) Flock positions using the local controller

Figure 3.1. The GNN ( = 3) maintains a cohesive flock, while the local controller allows the flock to scatter.

the local controller in Fig. 3.1d. Each diagram shows the initial agent positions and velocities at time = = 0

and then at = = 300, qualitatively illustrating the stable flocking of the GNN and failure of the local controller.

Next, we study the performance of the GNN controller (for different values of  ) compared to both the

local controller u†
8
and the global controller u∗

8
[eq. (3.2)] under different flocking scenarios; namely, different

initial velocities (Fig. 3.2a), communication radius (Fig. 3.2b), and number of agents (Fig. 3.2c). Then, we also

consider different aggregation GNN architecture hyperparameters (Fig. 3.2d. We recall that the performance

is measured by the cost metric defined in (3.5). In general, we observe that the GNN cost is bounded by the

global controller as a best-case baseline, and the the local controller as the worst-case baseline, as expected,

showing, in many cases, a marked improvement over the local controller u†
8
.

More specifically, in Fig. 3.2a, we fix the communication radius ' = 1.0 m for # = 100 agents. The

 = 1 controller, which uses the same data as the local controller, performs an order of magnitude worse than
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Figure 3.2. The flock’s maximum initial velocities, communication radius, and the number of agents are key parameters
affecting the control cost. The GNN architecture uses 2 hidden layers with 32 neurons each.

 = 2 to  = 4, whose performance is comparable. At the highest initial velocity of E8=8C = 4.5 m/s, the

 = 4 GNN performs slightly better than the rest. Fig. 3.2b shows that the flocking problem becomes more

challenging as the communication radius decreases, for fixed maximum initial velocities, E8=8C = 3.0 m/s, and

# = 100 agents. The difference between the GNNs is most dramatic at ' = 1.0 m, where the  = 3 and 4

controllers perform much better than all but the global controller. It is interesting to note that the cost of the

local controller dips below the GNN controllers for large communication radii such as ' = 4.0 m. This may

be due to the lack of truncation of the GNN features in (3.4). In Fig. 3.2c, we observe that the flocking cost

per agent, computed by (3.5), decreases in value and variance as the flock size increases, with fixed ' = 1.0

m and E<0G = 3.0 m/s. The GNN approach generalizes easily to 150 agents, with no penalties on larger
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flocks. In Fig. 3.2d, we observe that the GNN architecture resulting in the lowest control cost uses 1-2 hidden

layers and 32-64 neurons, for fixed E8=8C = 3.0, # = 100, ' = 1.0 m. For smaller architectures, we observe

under-fitting.

Transfer to Leader Following. Next, we investigate a new application of flocking in the presence of leader

agents, with which the rest of the flock must align velocities. This application is extremely relevant for

human-robot interaction for control of large swarms, and has not been previously explored by [52]. In the

previous section, the flock positions and velocities are initialized at random. This induces a symmetry in the

configuration - the distribution of velocities in an agent’s 1-hop neighborhood is the same as in its 2-hop or

3-hop neighborhood. Now, our goal is to investigate applications in which this symmetry is not present, to

emphasize the capabilities of the aggregation GNN for  = 3 and  = 4. All models in this experiment were

trained for E8=8C = 3.0 m/s, # = 100, and ' = 1.0 m.

We first examine the transfer of the trained controllers to a system with two leader agents that have equal

velocities that remain constant throughout an episode. That is, we train the architecture on examples of the

symmetric network, but we test it on the leader system. Results are shown in Fig. 3.3c. We can observe

that the  = 3 and  = 4 aggregation GNNs provide the best performance which is in agreement with the

intuition that 2-hop and 3-hop aggregations allow the agents to respond more quickly to a leader agent who

may be multiple hops away. In the second scenario, agents are initialized in a grid, with velocities radially

inwards toward the centroid of the flock. The initial velocities of agents are initialized to be proportional to

their distance from the center of the flock. Results are shown in Fig. 3.3b. As the number of agents increases,

we see the cost increases exponentially because the initial velocities increase, which is consistent with Fig.

3.2a. This scenario is particularly prone to the scattering behavior of Fig. 3.1d due to the high probability

of near-collisions, but the  = 3 and  = 4 controllers successfully align the agents’ velocities and promote

regular spacing among agents.

C High order dynamics

The ideal point masses provide a convenient benchmark for testing the effects of system parameters, but

ultimately, we are most interested in flocking for robotic systems. Our goal in this section is compare several

approaches to flocking in large teams of up to 50 quadrotors in simulation. Testing in the AirSim simulator
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(d) Grid of agents with radial velocities

Figure 3.3. The trained GNN is transferred to new challenging scenarios with large numbers of agents.

allows us to test our controllers in the presence of higher order dynamics, slower control rates, and latency in

observations [55].

The first challenge is that the AirSim simulator runs in real time, and produces an order of magnitude fewer

training data points as compared to the point-mass simulation. To speed up training, we attempt to train on a

simulated point mass system that was tuned to the parameters of AirSim. Since, we were not able to achieve

an exact control frequency for the simulation, we instead observed that commands were issued at a variable

time interval, with a mean of 0.12 seconds, and a standard deviation of 0.018 seconds. Therefore, we adapted

the point mass simulation to match the AirSim simulation by sampling )B ∼ N (0.12, 3 × 10−4) and applying

the linear model in (1.1). The inputs and outputs of the controllers were scaled by a factor of ; = 6 before

evaluation of the GNN so that the optimal spacing dictated by the potential function (3.1) does not result in
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collisions. The scaling of the control actions and features was performed by: x=+1 = 5 (x=, ; · c(x=/;)), where

5 is the dynamics of the system, and ; = 6 is the scaling factor.

The second challenge was converting from the desired acceleration values produced by the controller to

the desired roll and pitch commands. We follow the approach of [56], which linearizes the dynamics of the

robot about the hover point. In our case, the roll, q, and pitch, \, are proportional to the desired acceleration

in the G and H dimensions. For a fixed yaw orientation, we used the approximation: q = u2/6 and \ = −u1/6.

The signs are inconsistent with those of [56] due to the AirSim convention that the +/ dimension is down.

This approximation is only valid for small accelerations, so the acceleration inputs were clipped to a range of

[−3.0, 3.0] m/s2. Performance of the controllers was quantified using the variance of velocities in (3.5). We

initialize the flock uniformly spaced in a grid formation with a distance of about 4.8 m between agents, and

with x/y velocities sampled uniformly on the range [−3.0, 3.0] m/s. The communication radius in AirSim

was fixed at 9 m.

Fig. 3.4 compares the performance of controllers trained in simulation against those trained on the

stochastic point mass model. The results of all eight GNN models are framed by the local and global

controller as the upper and lower baselines. The GNN controller with  = 4 trained in AirSim outperformed

all other learned controllers. For  = 1 and  = 2, the controllers trained in simulation and AirSim had

similar performance, but as additional aggregation operations are added, the benefit of training in AirSim

becomes more obvious. We believe that the  = 4 model trained on point masses has overfit to the ideal

dynamics, so the performance degrades. Both in simulation and in point-mass experiments, we observed

a failure mode, in which a small group of agents is moving too quickly and escapes from the rest of the

group. This small sub-flock typically exhibits flocking behavior among the several agents, but has no ability

to re-join the flock, because it is permanently outside of the communication range of the rest of the agents.

This drawback results from the lack of hard constraints on the connectivity in the system.

D Summary

We have demonstrated the utility of aggregation graph neural networks as a tool for automatically learning

distributed controllers for large teams of agents with coupled state dynamics and sparse communication

links. We envision the use of an Aggregation GNN-based controller in large-scale drone teams deployed into
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Figure 3.4. Four models were trained in AirSim and four on the stochastic point masses, and then all models were tested
in AirSim. We visualize this experiment in a video provided along with this work.

communication-limited environments to accomplish coverage, surveillance ormapping tasks. In these settings,

it is critical for agents to incorporate information from distant teammates in spite of local communication

constraints; we show aggregations GNNs can be extended to accomplish this even with the time-varying

agent states and time-varying communication networks typical of mobile robots. In experiments, learning

decentralized controllers for flocking and additional applications confirms the value of multi-hop information

to performance and robustness to number of agents and communication radius. In future work, enforcing

state or input constraints could help avoid these failure modes.
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Figure 3.5. Screenshot of drones in AirSim.
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Chapter 4

Inverse Optimal Planning for Air Traffic Control

Air traffic controllers (ATC) must follow a complex set of regulations, including requirements on spacing

between airplanes, weather restrictions, and airport-specific departure and arrival protocols. Additionally,

experienced ATCs often formulate strategies that balance various demands that arise from the complex

interplay between these factors. The demand for ATC services, which are already stretched thin, will further

increase due to the rapid progress in the field of aerial robotics.

We tackle the problem of building an Autonomous ATC that could significantly reduce the load on the

human operators. In particular, we envision a system that concisely describes the rules of air traffic control

and supports dense autonomous air traffic around commercial airports. There are several key challenges in

building such an autonomous system. First, there are various deterministic and stochastic variables, such as

traffic density, weather, regulatory requirements, and local geography. Often, there are multiple compliant

ways, that can be qualitatively very different, to route air traffic. While a human operator can seamlessly

optimize across these factors, it is not clear how an algorithmic system should weigh and jointly optimize

across all these different criteria to mimic the choices of the human ATC. Secondly, most of the existing ATC

services are developed for standard fixed-wing aircraft and helicopters. It is not clear how the current ATC

system should be extended to novel aerial vehicles, such as micro UAVs and VTOL vehicles, which might

have completely different dynamic behavior. Finally, from the algorithmic point of view, such a planning task

requires optimization across multiple dynamic agents, which quickly becomes intractable as the number of

vehicles increases.
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Our novel approach combines search-based motion planning and inverse reinforcement leaning to address

these challenges. The key technical insight is that, given a planner, we can learn a reward function that an

ATCmight be optimizing by leveraging aircraft traces available via the U.S. Federal Aviation Administration’s

Aircraft Situation Display to Industry feed. In particular, we learn the parameters of the reward function that

correspond to how different factors are considered for trajectory selection.

The resulting trajectories attempt to imitate real air-traffic and are shown to be safe and feasible. The

learned cost functions are interpretable and can be compared to existing standard procedures. Additionally,

the decoupling between the planner and the reward functions means that we can change the dynamics to those

of a new aircraft or aerial robot and the system can adjust without retraining. Further, leveraging robotic

path-planners also helps with computational challenges and eliminates the need for directly learning a control

policy.

There are significant efforts to redesign the air traffic control system to enable autonomous decision

making. One popular research direction is focused on conflict resolution to prevent vehicles from entering

unsafe states. For example, [57] aims to quantify the complexity of the current air traffic situation and

provides a scheme for distributed control that ensures safety and eliminates the possibility of collisions. [58]

develops a Markov Decision Process-based system for resolving conflicts in flight plans. There has been a

significant thrust in the development of air traffic simulators and interactive systems for experiments with

control algorithms and human factors. [59] describes a simulator developed by NASA and an example of a

reinforcement learning approach for an airplane’s greedy optimization of arrival times. Rather than manually

designing a reactive system that eliminates conflicts, we seek to learn how to generate feasible trajectories for

open-loop control in dense air traffic.

In mobile robot navigation, the penalty on unsafe states can be formalized as a spatial potential field.

The artificial potential field is a popular method for efficient obstacle avoidance behaviors [60]. First, a

potential field is generated based on known obstacles, and then the gradient of this potential field determines

the direction of motion. One major drawback is the lack of guarantees for arrival at the origin or obstacle

avoidance. Getting stuck in local minima of the potential functions is a risk [60]. The evolutionary artificial

potential function method has also been used for real-time robot path planning in the presence of dynamic

obstacles [61].

Potential functions have been used extensively to model air traffic. [62] proposes a potential-field based
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system that can encode the effects of factors such as weather and air traffic density to manage en-route traffic.

[63] focuses on the problem of re-routing of air traffic due to weather by generating potential functions and

addresses the problems of local minima.

These works use heuristics to avoid local minima in the potential field. They also neglect the problem of

path planning in dense airspace around airports immediately prior to landing. We follow the approach of [64],

which uses an artificial potential function as a penalty so that an optimal planner avoids potentially unsafe

states. We extend this approach to the Dubins Airplane model and learn the potential function.

Inverse reinforcement learning is the problem of using expert demonstrations to learn the reward function

that an expert is maximizing. This reward function can then be used to determine a controller that imitates

the trajectories of the expert. Approaches such as behavior cloning [65] seek to directly find a mapping

from states to experts’ actions, but this may generalize poorly to new situations. Other approaches include

maximum margin planning [66] and feature expectation matching [67], but these suffer from an ambiguity

because one policy can be optimal for many different reward functions. We apply the maximum entropy

inverse reinforcement learning algorithm described by [68]. This approach has been extended to deep reward

functions and policies [69] and has been used in conjunction with planning for manipulation tasks [70].

This chapter has been published as [71]. An open-source implementation of our work can be found at

https://github.com/katetolstaya/flight_data. A video demonstration of the approach is

available at https://youtu.be/5HasgHNl-XY.

A Planning using the Dubins Airplane Model

We model the state of a single airplane using the Dubins airplane model, a four-dimensional system with a

configuration space, S = R3 × [−c, c], with s = (G, H, I, q), where G, H and I describe the coordinates of the

airplane in three-dimensional Euclidean space, and q ∈ [−c, c) is the bearing of the airplane relative to the

+G axis [72]. This airplane model assumes a fixed speed of E in the GH-plane.

The system is controlled through the first derivatives of altitude and bearing, ¤q and ¤I, with control inputs

denoted as DI and Dq , respectively. The system can be described as:

¤s = [ ¤G, ¤H, ¤I, ¤q]) = [E cos q, E sin q, DI , Dq]) (4.1)
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This model can be used to plan a trajectory from an initial state s0 = (G0, H0, I0, q0) to a given a goal

configuration s6 = (G6, H6, I6, q6). This information is given to each airplane by air traffic control when

the airplane approaches an airport. For example, s6 may be the location and orientation of an assigned

runway. We assume that these assignments are provided prior to planning. The problem of planning a safe,

minimum-length trajectory from the current state of the airplane to the goal can be formalized as follows:

argmin
s(C)

∫ )

C0

‖¤s(C)‖ 3C (4.2)

s.t. ¤s(C) =
(
cos q, sin q, DI (C), Dq (C)

)
s(C0) = s0, s()) = s6

s(C) ∈ SB0 5 4, u(C) ∈ U

where SB0 5 4 is the set of safe states and U is the set of allowed control inputs. To enable learning the

set of safe states SB0 5 4, we can reformulate (4.2) to use a soft penalty on possibly unsafe states, following

the approach of [64], which uses hard constraints in addition to a potential function that guides the planned

trajectory farther away from obstacles. The penalty term, �
(
s(C)

)
, will be learned from data. For now, we

express the new minimum path length planning problem as:

argmin
s(C)

∫ )

C0

(
1 + �

(
s(C)

) )
‖¤s(C)‖ 3C (4.3)

s.t. ¤s(C) =
(
cos q, sin q, DI (C), Dq (C)

)
s(C0) = s0, s()) = s6

u(C) ∈ U

The motion cost of a trajectory, g : [0, g] → S , is the sum of the path length and the line integral of the

penalty:

� (g) =
∫ )

C0

(
1 + �

(
s(C)

) )
‖¤s(C)‖ 3C. (4.4)

Solving the motion planning problem (4.3) requires searching the space of all feasible trajectories. The

continuous state and time problem is intractable, so we follow the approach of [73] by discretizing the system

in time with an interval of ΔC = 30 seconds. We also discretize the controls to obtain a set of fixed-time
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motion primitives. The bearing is chosen from the set Dq ∈ {−Δq, 0,Δq} and the altitude change is chosen

from the set DI ∈ {−ΔI, 0,ΔI}. The motion primitives induce a discretization of states and enable the use of

search-based motion methods for planning feasible and resolution-complete solutions [73]. While continuous

states are denoted s ∈ S , we denote the discretized states as s̄ ∈ G, where G is a 4-dimensional grid, G ⊂ S.

The induced discretization has a resolution of 1 = [dG , dH , dI , dq], so the conversion from s to s̄ can be

expressed using the floor function b c :

s̄ =

[⌊
sG
1G

⌋
,

⌊ sH
1H

⌋
,

⌊
sI
1I

⌋
,

⌊ sq
1q

⌋]
(4.5)

To solve the discretized problem, we apply the Anytime Repairing A* (ARA*) algorithm for finite-time path

planning [74]. Please note the n-suboptimality guarantee for the ARA* algorithm, which is expressed as:

� (g∗) ≤ � (g) ≤ n� (g∗) (4.6)

where n ≥ 1 and g∗ is the optimal path and � (g∗) is its cost. The ability to sample suboptimal trajectories

allows us to visit and learn about a larger variety of states during inverse reinforcement learning. Given the

continuous trajectory defined by a series control inputs, we then use trajectory refinement to produce smoother

trajectories using spline interpolation [73].

To use the ARA* algorithm for motion planning for fixed-wing vehicles, we must use a heuristic that

provides a lower bound on the distance to the goal. For the non-holonomic Dubins airplane model, there

are existing methods for computing the optimal path length from a start state to a goal state, but they

are expensive to compute and require the consideration of low-altitude and high-altitude cases [72]. To

simplify this computation, we always assume the high altitude case, which allows adding a helical descent

or ascent without worrying about collisions with the ground. Our heuristic may therefore be inadmissible in

difficult low-altitude cases, but is much more computationally efficient. The computation of this heuristic is

summarized in Algorithm 2: First, we use the Dubins car model to compute the minimum path length from

the start state to the goal state in the GH plane. Following the approach of [75], to find the shortest length

path, we check each of six types of Dubins Car paths, with each path consisting of three segments: Right

(R), Straight (S) and Left (L) [75]. Then, we compute the minimum time necessary for the ascent or descent.

Then, if there is not enough time for the airplane to change altitude, we add helical sections to the trajectory to
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allow the airplane to descend in the I dimension and return to the same position and bearing in the GH plane.

Algorithm 2 Dubins Airplane Heuristic
Input: Start s0, goal s6, forward speed E, max rate of climb ΔI, turning rate Δq

Output: Minimum path length from start to goal, 3<8=
1: Compute Dubins car distance 3GH using the LSL, RSR, LSR, RSL, RLR, LRL paths with curvature
^ = Δq/E

2: Compute the minimum time from start to goal in the GH plane

C<8= = 3GH/E

3: Compute the minimum time for ascent/descent

CI = |I6 − I0 |/ΔI

4: while CI > C<8= do
5: Add a helical ascent/descent to the trajectory

C<8= = C<8= +
2c
Δq

6: end while
7: Compute the minimum path length from start to goal:

3<8= =

√
(E · C<8=)2 + (I6 − I0)2

B Learning From Demonstrations

We assume that the set of safe states S in (4.2) is unknown. These conditions may be determined by the layout

of the airspace at an airport, the motion of other airplanes, or weather. Our goal in this work is to learn about

the unsafe conditions through inverse optimal control. To enable learning � using gradient descent, we use

the soft penalty formulation in (4.3).

In order to learn the true penalty � (s), we require a data set of expert demonstrations,D =
{
B4
8
(C)

}
8=1,...," .

Although we do not know the true penalty � (s), we have a current best estimate, �\ (s). This cost, �\ , is a

function of non-linear features f of the state s, defined in Section C along with particular examples of cost

functions. We parametrize �\ as linear in the features of the state f (s):

�\ (s) = \) f (s). (4.7)
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The motion planner can use this estimated �\ to plan trajectories satisfying (4.3). Our next goal is to formulate

the loss function that will allow us to update �\ using trajectories from the expert and learner.

We assume that the demonstrated expert trajectories follow the principal of maximum entropy [76], which

states that the probability of an expert’s trajectory g with a lower cost is exponentially more likely to be

selected than a trajectory with a higher cost:

P(g) ∝ 4−� (g) (4.8)

Using this assumption, we can apply themaximum entropy inverse reinforcement learning algorithm described

by [68], and its deep learning counterpart [69]. A detailed comparison of related works can be found in [70].

This approach seeks to find the cost function �\ that maximizes the log likelihood of expert trajectories D:

L(\) = logP(D, \ |�\ ) (4.9)

If the cost function �\ is a linear function the features, this problem is convex. [68] shows that the gradient

of this objective is the difference in feature counts along the trajectories of the expert and the learner. To

compute the gradient of L with respect to \, we need to first introduce the state visitation counts of the expert

computed using the data set D:

fD =
∑
g∈D

∑
s∈g
P(g)f (s) (4.10)

In [68], the expert’s empirical feature counts are compared to the expectation of the learner’s state visitation

counts:

E[f\ ] =
∑
s∈S

f (s)P(s|�\ ) (4.11)

Using these two quantities, we can express the gradient of L to be equal to the difference in feature counts

along the trajectories of the expert and the learner [68, 69]:

∇\L = E[f\ ] − fD (4.12)

As in [77], we assume that the distribution of the learner’s sampled trajectories is uniform. Therefore, the

expectationE[f\ ] can be estimated using samples from learner with the current cost function �\ andwe can use
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Algorithm 3 Inverse Optimal Control for Air Traffic
1: repeat
2: Receive expert trajectories ordered by arrival time

D =
{
s48 (C)

}
8=1,...,"

3: for 8 = 0, 1, . . . , " do
4: Obtain start state, s0, and end state, s6, of s4

8
(C)

5: Obtain other airplanes’ trajectories, s>
:
(C) for : < 8

6: Use ARA* planner to minimize �\ over s(C)
7: Compute stochastic gradient:

∇̂\L =
)∑
C=C0

5
(
s(C)

)
−

)8∑
C=C0

5
(
s48 (C)

)
8: Update cost parameters \ with step size U:

\C+1 = \C + U∇̂\L

9: end for
10: until convergence

the stochastic gradient computed using trajectories from the learner with the current cost �\ ,
{
s8 (C)

}
8=1,...,# ,

and trajectories from the expert,
{
s4
8
(C)

}
8=1,...," :

∇̂\L =
1
#

#∑
8=1

)8∑
C=C0

5
(
s8 (C)

)
︸                   ︷︷                   ︸

learner

− 1
"

"∑
8=1

)8∑
C=C0

5
(
s48 (C)

)
︸                    ︷︷                    ︸

expert

(4.13)

Gradient ascent on the objective L(�) will increase the cost of the states that the learner visits, but the expert

does not, so that the learner will avoid those states in the future. In practice, we set " = # = 1.

We summarize our approach in Algorithm 3. The learner obtains sets of time-synchronized expert

trajectories for the landings of two or more airplanes. Then, for each trajectory in the expert’s data set,

the ARA* planner is used to plan a trajectory between the same start and end states. Given the expert’s

and learner’s trajectories, we can then compute the stochastic gradient and perform a gradient step on the \

parameter of the cost function. If the planner fails to produce a solution within the time limit, we use only the

expert’s trajectory for the gradient computation.
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C Safety in a Multi-agent System

Our next goal is to use prior knowledge to add structure to the cost function � to speed up learning. We

assume that the centralized air traffic controller plans the landing trajectories for airplanes in the order of their

arrival. When planning the trajectory for every new airplane, s(C), the trajectories of the = previous airplanes

are known, denoted
{
s>
:
(C)

}
:=1,...,=. We also know the location of the destination airport, s0.

Also, recall that the planning problem is computed in a discrete state space s̄ ∈ G, so we will only need

to compute the cost of states on this discrete grid and can use the conversion from s to s̄ in (4.5). Therefore,

rather than directly learning �, we only need to learn �̄ : G → R. To relate this form to the previous notation,

this is equivalent to choosing a feature extraction function f (B) that converts the continuous states s to discrete

states s̄ and then applies additional non-linear operations.

We assume that �̄ depends on two types of safety constraints: location relative to a specific airport, and

the pairwise spacing between airplanes. The first component of the cost function �̄ controls the airspace

around airport 0 and can be expressed as �̄0
(
s̄(C)

)
. The second cost function controls the pairwise spacing of

airplanes and can be written as �̄>
(
s̄(C), s̄>

:
(C)

)
, where s̄>

:
(C) is the location of a nearby airplane at time C. If

there are = other airplanes in the area, we must sum this objective for all other airplanes:
∑=
:=1 �̄>

(
s̄(C), s̄>

:
(C)

)
.

Therefore, �̄
(
s̄(C)

)
can be written as a sum of the two types of soft penalties:

�̄ (s(C)) = �̄0
(
s̄(C)

)
+

=∑
:=1

�̄>
(
s̄(C), s̄>: (C)

)
(4.14)

Next, we parametrize �̄0 and �̄> to allow us to learn these functions using gradient descent. Motivated by

planning in the presence of potential functions [64], we choose to represent �̄0 as a spatial potential field,

approximated using a fine discretization of the input space. This approximation represents the cost function as

a value for each state s̄ ∈ G on a discrete grid. A cost function used for motion planning must be non-negative.

Also, the formulation must be piece-wise linear in features of state, f (s), to satisfy the assumptions of [68].

Therefore, we use a cost function of the following form:

�̄0
(
s̄(C)

)
=

∑
s̄8 ∈G

max
{
F8 , 0

}
1s̄(C)=s̄8

(
s̄(C)

)
, (4.15)

where G ⊂ R4 is a finite set of all states within the controlled airspace and 1 is the indicator function. By
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learning F8 for each discrete state in the space, we construct a look-up table of costs to enable efficient motion

planning.

Next, we describe the penalty on pairwise distances between airplanes to control the airspace around each

airplane. Each prior arrival is treated as a moving obstacle with a known trajectory, s̄>
:
(C), and a cylindrical

shape. We choose the penalty on getting too close to another airplane to be a linear drop-off potential function

[78]:

�̄>
(
s̄(C), s̄>: (C)

)
= `max {_I − |ΔI (C) |, 0}max

{
_GH −

√
Δ2
G (C) + Δ2

H (C), 0
}
, (4.16)

where Δ(C) = s̄(C) − s̄>
:
(C) and ΔG (C), ΔH (C) and ΔI (C) are the components of the difference in the discrete

positions of the two airplanes at time C. We consider the relative positions in the horizontal and vertical

dimensions separately since the clearance requirements in altitudemay be different. The _GH and _I thresholds

are learned through gradient descent, while the scaling factor ` is determined as a hyper parameter. The

parameters for �̄0 and �̄> can now be learned through stochastic gradient descent:

\ =

[
{F8}s̄8 ∈G , _GH , _I

]
(4.17)

The number of parameters F8 is large and equal to |G |. In the next section, we describe the practical

considerations of learning this set of parameters.

D Methods and System Architecture

Now, we describe the implementation of the inverse optimal control system that learns from the air traffic data

set.

Dataset Processing. In this work, we narrow our focus to airplane landings at the Seattle-Tacoma airport

(SEA), but this approach can be generalized to take-offs or inter-airport routing. Specifically, our goal is to

mimic the Standard Terminal Arrival Routes at the SEA airport [79]. We use recorded trajectories from the

11th - 13th of January, 2016 as provided by FlightAware [1]. A visualization of current data is displayed

in Figure 4.1. The data set provides the location of airplanes asynchronously at a time interval of about 30

seconds.
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Figure 4.1. A visualization of the Seattle-Tacoma airport data provided by FlightAware, with arrivals indicated in teal and
departures in green [1].

GPS Position
& Bearing

G, H, I, q
ENU in km

s ∈ R4

Motion
Primitive Grid

s̄ ∈ G

Figure 4.2. Three parametrizations are used for expressing airplane states. The raw data provided by FlightAware is given
in GPS latitude, longitude and altitude. We can convert from GPS to a local east-north-up (ENU) Cartesian frame. Then,
we discretize the state with a resolution of d to obtain the motion primitive grid coordinates via (4.5). Continuous state
representations are denoted in blue and discrete - in red.

The airplane locations were provided as GPS measurements of latitude, longitude and altitude from

onboard instrumentation. Bearing was estimated from subsequent observed locations. The providedWGS-84

measurement (GPS latitude, longtiude and altitude location) were converted to a local east-north-up (ENU)

Cartesian system centered on the location of the Seattle-Tacoma airport [80, 81]. All distances are provided

in kilometers and bearing angles in radians from the +G axis. The +I axis indicates up and is perpendicular

to the tangent plane.

By utilizing the Dubins airplanemodel, wemake a constant velocity assumption. Real airplane trajectories

accelerate and decelerate, especially during take-offs and landings. Extending our approach to acceleration

or jerk-based motion primitives as in [82] is left to future work.

Interpolation. The FlightAware data set provides waypoints at a time interval of about 30 seconds. We needed

to perform interpolation, which is required for three reasons: 1) to generate time-synchronized trajectories

for multiple airplanes, 2) to approximate the cost along a continuous trajectory, and 3) to generate dense

52



trajectory data for SGD updates. The interpolation is computed for the G, H and I components of the trajectory

separately using the Univariate Spline module of the SciPy library [83]. The bearing of the aircraft is then

computed using subsequent GC , HC , IC locations, qC = arctan2(HC+1 − HC , GC+1 − GC ).

Planning. The ARA* planner is given a fixed time limit of 30 seconds. The planner does not always find

a solution within the time limit, in which case we assume that the learner obtained a trajectory with zero

cost and no states. This provides a lower bound on the learner’s cost and assumes that the learner is able

to instantly move directly from that start to the goal. In this case, we can use only the expert’s trajectory

for the stochastic gradient to update the cost function. The parameters of the motion primitives, such as the

maximum turning rate and maximum rate of climb, were chosen based capabilities of commercial aircraft and

tuned through a grid search procedure by comparing with actual trajectories. The parameters were chosen to

be: forward velocity E = 100 m/s, rate of climb ΔI = 6 m/s, time discretization ΔC = 30 s, angular velocity

Δ\1 = 0.025 radians/s. An additional allowed turning rate of Δ\2 = 0.0025 radians/s mitigated some of the

imprecision resulting from the coarse time discretization. The Dubins airplane heuristic still uses the largest

turning speed to compute an approximate lower bound on the path length. The airplane states were discretized

to a resolution of dG = dH = 125 m in the G and H dimensions and dI = 50 m in the I dimension. The bearing

was discretized to dq = 0.05 radians. Also, due to the discretization of the control space, it is extremely

unlikely that the planned trajectories end up at exactly the goal state. Therefore, rather than having a single

goal state, we use a goal region of ±[500, 500, 25] meters and ±0.125 radians centered around the original

goal state.

Learning. To fit the cost function �̄0 as described in (4.15), we need to store cost function values for each

discrete state in the state space. We observe that the true structure of the data is sparse, so rather than storing

a dense look-up table of cost values, we implement a sparse hash-map approach, which allows a constant-

time evaluation of a state’s cost. �̄0 is initialized to a cost of F8 = 100 for all states. When we observe a

particular state and perform a gradient step, we store the new value in the hash table. To further improve

computational efficiency, the cost function was discretized on a slightly coarser grid that that of the motion

primitive discretization, with resolution 0.25 in the G and H dimensions and 0.125 in the I dimension. The

bearing was discretized to 0.125 radians. A step size of U = 10.0 was used for learning.

The discretization of the cost function presents a challenge if the localization information is not exact.

The provided dataset uses GPS locations, which are susceptible to drifts and sensor noise. One possible
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Figure 4.3. We quantify the planning performance of a planner that uses the learned �̄0 function and a planner that
minimizes the path length criterion only. The average minimum path difference is 1

#

∑#
8=1

1
)

∑)
C=1 minD | |s̄8 (C) − s̄4

8
(D) | |2,

a measure of how far the learner’s trajectory strays from the expert’s demonstration on average. Error bars denote a one
standard deviation bound and # = 300.

solution is evaluating the cost function at planning time by computing the average of multiple nearby cells of

the cost function grid. This is expensive due to the sparse data structure used to store the values of the cost

function. Instead, we add Gaussian noise to the state sC before the gradient update of the cost function (4.13).

A small amount of white Gaussian noise is added to the input state sC before discretization: wC ∼ N (0,Σ),

where Σ = [0.25, 0.25, 0.125] �. The cost function �̄> was initialized with overly conservative thresholds of

[_GH = 60, _I = 60] in discretized units, which is equivalent to [7.5, 3] km. A step size of U = 0.01 was used,

with gradients larger than 100.0 clipped. The slope of the cost function is ` = 1.0.

E Results

The arrival route function �̄0 has an extremely large number of parameters and therefore requires more data

to train. We trained this function first without considering distances between airplanes. Then, we fixed the

routing cost function while learning the inter-airplane safety function �̄>.

Learning the Airport Routing Cost. First, we train the airport routing cost, �̄0, that defines the allowed

paths for airplanes arriving to the Seattle-Tacoma airport. Rather than the expensive computation of L(�\ )

(4.9), we benchmark performance by the margin between the cost of the learner’s trajectory and that of the
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(a) Cost Margin L̂( �̄0) (b) Fraction of Time-outs

Figure 4.4. First, we train the airport routing cost function �̄0 . In Fig 4.4a, we observe that, L̂(�̄0), the margin between the
expert’s cost and the learner’s cost increases during training, which we use as a proxy for the true optimization objective
L(�̄0). The ARA* planner is given a fixed time budget and sometimes exceeds that time budget without finding a solution.
Fig 4.4b shows the fraction of time-outs, which decreases during training. In both plots, each data point is the average of
50 consecutive training steps.

expert, given an expert trajectory s̄4
8
(C) and a corresponding planned trajectory s̄(C):

L̂(�̄0) =
)8∑
C=C0

�̄0
(
s̄(C)

)
−

)8∑
C=C0

�̄0
(
s̄48 (C)

)
(4.18)

As the cost of the expert trajectory decreases relative to that of the expert, the objective increases and the

probability of the expert’s trajectory (4.9) increases. In Figure 4.4a, we observe that the benchmark L̂(�\ )

increases during training.

It is important to note that the use of a fixed time limit for the ARA* planner often produces time-outs.

In this case, the gradient step is computed using only the expert trajectory, treating the learner’s trajectory as

a cost of zero. Also, to speed up learning for the first 1000 iterations, we used only the expert’s trajectory

for the gradient step since the fraction of time-outs is large at the beginning of training. It is interesting

that the number of time-outs decreases during training, as we can see in Figure 4.4b. As the cost of the

expert trajectories and the corresponding states decreases, the Dubins airplane heuristic becomes a tighter

lower bound on the motion cost of the trajectories that move through those states. In Figure 4.5, we can

see two examples of planned trajectories. We compare a trajectory planned using only the minimum path

length objective to a trajectory planend using the learned �̄0 cost function. After training, the learner closely
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(a) Minimum path length (b) Using �̄0

Figure 4.5. A comparison of the expert’s and learner’s 3D trajectories for two different objective functions. The actual
ATC trajectory is denoted with green arrows and a green spline. The planner’s path is marked with red arrows and
interpolated by the red curve. The units are in kilometers in the ENU coordinate system. In 4.5a, the planner minimizes
the path length alone, and in Figure 4.5b, the planner uses the learned airport routing cost, �̄0 .

follows the expert’s trajectory, with small oscillations in the z-axis. Figure 4.3 quantifies this comparison of

the minimum path length planner and the routing cost planner over 1000 trajectories.

Learning the Inter-Airplane SafetyCost. Now, we turn to learning the cost function that controls the spacing

between pairs of airplanes, �̄>. We examine an example of five concurrent landing trajectories planned using

the learned costs �̄0 and �̄> in Figure 4.6. The cost function �̄0 is visualized in green, with darker values

indicating lower cost, and lighter values indicating higher cost. The five airplane trajectories are indicated with

colored curves, with the current location of each airplane marked with a small filled circle. The thresholds of

the �̄0 function are marked with large unfilled circles of corresponding colors. If a sixth airplane approached

the airport, it would consider these unfilled circles to be states with very high cost and would avoid these

regions, eliminating the posibility of collisions.

F Summary

This work develops the method for search-based planning using cost functions learned through inverse optimal

control. We demonstrate that the learned cost functions encode the implicit safety criteria of human ATC
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(a) C = 180 s (b) C = 360 s (c) C = 480 s

Figure 4.6. A top down view of five trajectories produced by the learner using both �̄0 and �̄>, with the trajectories of
the airplanes denoted in red, blue, yellow, purple and green, and their current locations denoted with a small filled circle.
The large unfilled circles denote the threshold of the �̄> cost, preventing airplanes from getting too close to each other.
The learned cost function �̄0 is in the background indicated by green shading, with dark green indicating low cost states,
and white indicating high cost states. We observe that the controller maximizes the efficiency of this landing sequence by
pushing the trajectories of the airplanes as close together as allowed by the safety criterion.

trajectories while maintaining high efficiency comparable to that of human operators. Our approach is well

suited for planning trajectories over longer distances of tens of kilometers, but the Dubins airplane dynamics

model has obvious limitations due to the coarse discretization of the control space, which are especially

apparent during the last stages of a landing. Given a data set with more precise location measurements at

a higher frequency, one possible solution could be to directly learn the motion primitives from data. This

approach would still need to be verified in a high-fidelity air traffic simulation.

We hypothesize that the learned cost functions could enable distributed control in dense airspaces, as

an alternative to completely centralized trajectory generation and air traffic control. The airplane spacing

function �̄> learns the relative importance of other vehicles during trajectory planning, indicating which other

vehicles can be ignored during planning. The airport routing function �̄0 may be found to encode which areas

of the airspace are unused and can be utilized by other autonomous air traffic.
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Part III

Distributed Communication
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Chapter 5

Learning Connectivity for Data Distribution in

Robot Teams

Robot teams must often operate in harsh environments without existing communication infrastructure, re-

quiring the formation of ad-hoc networks to exchange information. Furthermore, agent actions may take

them out of direct communication range with a subset of the team so that packets must be relayed through

intermediate nodes to reach their intended destination. Ad-hoc robot networks are implicitly decentralized. In

spite of this, many algorithms for control of multi-robot teams operate under the assumption that low-latency,

global state information necessary to coordinate agent actions can readily be disseminated among the team.

While detail about how this data distribution task is accomplished is often scarce, its success is vital to

the overall performance of the team. In this work, we address this challenge by providing a task-agnostic,

decentralized, low-latency method for data distribution in an ad-hoc network using Graph Neural Networks.

Our system enables existing centralized algorithms to be deployed in robot teams operating in harsh, real

world environments.

The problem of data distribution in a team of robots bears a strong resemblance to the problem of packet

routing in a mobile ad-hoc network (MANET). In our case, up-to-date global state information such as

velocity, pose, or map data must be maintained at each robot so that they can choose appropriate control

actions. Likewise, ad-hoc routing protocols in MANETs require each node maintain some knowledge of the

state of the network so that they can choose the next hop a packet should take in its journey from source to
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destination. For proactive protocols, this is often accomplished by periodically flooding the network with

link state information so that each node maintains a current understanding of the network topology [84]. This

process can be inefficient and strain the network with contention and packet collisions and as a result, many

different flooding schemes have been developed to mitigate the so-called broadcast storm problem [85]. As

is made clear in Section A, our method draws inspiration from these flooding schemes and employs them as

points of comparison during evaluation.

In this work, we assume the network is used exclusively for the data distribution task in question. As

such, it makes sense to skip the regular link layer overhead necessary to operate an ad-hoc routing protocol

and directly consider a data distribution protocol handling the application layer traffic of the robotic system.

In essence, our data distribution protocol is itself a routing protocol which circulates the state information

needed by the robots in the place of network state information needed for packet routing. While conventional

approaches use some form of flooding to accomplish this task, most are based on heuristics designed to

minimize the age of information and network overhead [85]. There exists no clear optimal approach. Thus,

we believe this problem is well suited to a data driven approach based on Graph Neural Networks paired with

reinforcement learning.

Graph Neural Networks (GNNs) have shown great promise for learning from information described by a

graph. Recent works have used GNNs to generate heuristic solutions to a variety of multi-robot problems,

such as path planning [14, 13, 15], exploration [16], and perimeter defense [17]. In this work, a GNN

is the natural choice for parameterizing the communication policy which prescribes actions based on the

information exchanged over the network graph. Furthermore, GNNs offer attractive properties such as

permutation invariance, making the learned solution robust to changes in graph topology between training

and testing.

In order to effectively distribute information, our model must learn when and with whom to communicate.

Many prior approaches use multi-agent reinforcement learning to address communication for particular coop-

erative control tasks, [86, 87, 88, 30]. These approaches generally do not incorporate bandwidth limitations

or physical channel models, often assuming that all agents are reachable through broadcast communications,

which is sometimes range-limited. Other approaches learn communication graphs to keep communication

sparse [89, 90]. However, such approaches begin creating these graphs by first assuming that the relative po-

sitions of all other agents can be noisily observed [89] or are transmitted through a series of global broadcasts
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[90]. In this work, we consider realistic communication conditions and thus assume no prior knowledge of

other agents except for their identities and overall team size.

In this work, we propose a learned, cross-layer data distribution protocol that can be applied to any multi-

agent task that relies on sharing time-sensitive local observations across a wireless network. The remainder

of the chapter is organized as follows: Section A describes the wireless communication model, local data

structures and the AoI minimization problem. Section B details the design of the transmission-response

protocol and our usage of reinforcement learning to train the GNN architecture. Section B also describes the

agent dynamics, the mission specification for the applications of our approach, and the baselines to which

we compare the performance of the GNN. In Section C, we showcase our protocol’s performance. The

development of the GNN architecture relies on Section C of Chapter 1.

This chapter has been published as [91]. An open-source implementation of our work can be found

at https://github.com/landonbutler/Learning-Connectivity. A video demonstration is

available at https://youtu.be/UNBvsPZIudU.

A Problem Formulation

Wireless Communication Model. In order to reason about transmitting information in a network, it is

necessary to establish a model for communication. In this work, we consider ideal wireless conditions

between agents with line of sight channels and successful packet reception subject to interference from other

transmitting nodes in proximity. Transmitted signals propagating through the air experience free-space path

loss E 8, 9C given by:

E 8, 9C = 20 log10 (3
8, 9
C ) + 20 log10 (a) − 147.55 (5.1)

where 38, 9C is the distance between transmitting agent 8 and receiving agent 9 , and a is the system center

frequency (in Hz) [92]. This approach is consistent with wireless studies involving transmissions between

aerial agents [93, 94]. From path-loss, we can define the channel gain as:

6
8, 9
C = 10−

E8, 9C
10 (5.2)
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and the signal-to-interference-plus-noise ratio (SINR) as:

Γ
8, 9
C =

d8C · 6
8, 9
C

f + ∑
:∈A\8

d:C · 6
:, 9
C

(5.3)

where f is additive white Gaussian noise representing ambient noise power at the receiver and d8C is the

transmit power of agent 8. In order for a packet transmitted from agent 8 to be successfully received at agent

9 , Γ8, 9C must exceed a SINR threshold Γ̂ that takes into account the QoS of the link [95]. Defining '8C as the

set of agents that receive a transmission from agent 8 at time C, we can express the probability of successful

packet reception at 9 as:

?( 9 ∈ '8C ) =


1 Γ

8, 9
C ≥ Γ̂

0 Γ
8, 9
C < Γ̂

(5.4)

Note that in ad-hoc networks, it is common for all nodes to contend for the same medium and thus be able to

decode any packet transmission for which they are in range, regardless of if they are the intended recipient.

In fact, this is a foundational aspect of many flooding algorithms [84]. We follow suite by allowing agents to

eavesdrop on each others transmissions.

Local Data Structures. Critical to any networking protocol is the metadata it caches for decision making. In

our approach, this information forms the feature vectors consumed by our communication policy. And, since

this is a data distribution task, there is an additional payload: given a set of robotsAwith clocks synchronized

at time C, each robot maintains a data structure that contains agent 8’s knowledge about agent 9 indicated by

"
8, 9
C . This information is required by the robot to make decisions to accomplish some task. Along with the

last known state, agent 8 also stores a timestamp for this observation of the state of agent 9 , ) 8, 9C . Agents can

observe their own local states at the current time step, x8C , and update their own memory accordingly:

"
8,8
C := x8C , )

8,8
C := C ∀8 ∈ A, C ≥ 0 (5.5)

Agents may make a decision to transmit their local data to others. The set (8C represents the intended recipients

of a transmission by agent 8 at time C. In this work, we constrain the set of intended recipients to be at most

one other agent. As outlined in the previous section, agents in proximity that transmit simultaneously run

the risk of interfering with each other causing communication failures. Thus, we define 5 as the stochastic
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communication model that determines the probability of receipt ?( 9 ∈ '8C ) of agent 8’s transmission by agent

9 at time C: {
?

(
9 ∈ '8C

)}
8∈A = 5

({
(8C , x8C

}
8∈A

)
, (5.6)

where 5 is the communication model described in Eq. 5.4. We also record the timestamp at which agent 8

last attempted communication with agent 9 , !8, 9C :

9 ∈ (8C =⇒ !
8, 9
C = C. (5.7)

As data is transmitted by agents in the team, we can track how it propagates through the network as shown

in the example in Fig. 5.1. We define the parent reference notation %8,:C = 9 to indicate that agent : first

passed its information to agent 9 on its way to agent 8. If agent 8 directly receives agent :’s information from

: , then %8,:C = 8. When agent 8 receives a transmission from agent 9 containing agent :’s state, agent 8 can

record the link along which agent 9 had obtained that information, %8,:C = %
9 ,:
C . This record of transmission

relationships describes how data flowed between agents to construct agent 8’s knowledge of the team’s state

at time C. If agent 8 has received agent 9’s transmission, then it will update its data structure if any of the

received information is newer than its current data, ∀: ∈ A:

)
8,:
C < )

9 ,:
C , 9 ∈ '8C =⇒ () 8,:C = )

9 ,:
C ) ∧ ("

8,:
C = "

9 ,:
C ) ∧ (%

8,:
C = %

9 ,:
C ) (5.8)

Local Policy to Minimize Age of Information. To effectively disseminate data in the network, a communi-

cation policy is installed at every node that operates entirely off of the information outlined in the previous

section. More formally, a policy c selects a recipient for its transmission using the set of information available

to agent 8 at time C:
{
)
8, 9
C , "

8, 9
C , %

8, 9
C , !

8, 9
C

}
9∈A

. The same local stochastic communication policy c is to be

used by all agents:

?(: ∈ (8C ) = c
({
)
8, 9
C , "

8, 9
C , %

8, 9
C , !

8, 9
C

}
9∈A

)
∀8, : ∈ A (5.9)

Given the dynamic nature of robot teams, it is vital that each node maintain up-to-date information. Thus, the

stochastic communication policy c needs to minimize the average age of information (AoI) across all agents,

where C − ) 8, 9C is the age of information for 8’s knowledge of 9’s state. To obtain the performance criteria for
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the whole system, we average over all agents, A, the mission duration, T , and team dynamics, X :

min
c
EC ∈T , 8∈A, x8C ∈X

[
C − ) 8, 9C

]
(5.10)

The objective of the data distribution problem is to minimize the average age of information across the team.

Data distribution is a cooperative task, so we can provide the team with a single reward signal, rather than

assigning rewards per agent. Furthermore, the training procedure is centralized, but the policy relies on only

local information, so it can be deployed in a distributed system.

We assume that the number and identities of robots in the team, A, are known prior to mission execution.

We also assume that robots share a common reference frame and a synchronized clock. Finally, we assume that

communications are not bandwidth-limited relative to the size of the transmitted data, {) 8, 9C , "
8, 9
C , %

8, 9
C }8, 9∈A.

The memory required for each agent to store its knowledge of the system state is linear in the number of

agents, O( |A|), but system-wide, the memory and communication requirements are O( |A|2).

B Methods

Aggregation Graph Neural Networks. Our goal is to develop a policy for making communication decisions

that each agent can evaluate using its local data structure. Recall that at each point in time C, every agent 8

has cached the set
{
)
8, 9
C , "

8, 9
C , %

8, 9
C , !

8, 9
C

}
9∈A

. By taking a graph perspective of the data, we can structure it

in a way useful for learning. To begin, we form the set of node features as: + 8C =
{
)
8, 9
C , "

8, 9
C

}
9∈A

. The parent

references %8, 9C capture adjacency relationships in the network, describing a tree structure from the perspective

of each agent 8. We can define a directed edge in this tree by the ordered tuple (A; , B;), where A; and B; are the

receiver and sender node, respectively, for the directed edge of index ;. Then, the set of all directed edges in

the graph of agent 8 at time C is � 8C =
{(
%
8,:
C , :

)}
:∈A\8

. In this work, no input edge attributes are used. Putting

it all together, we denote the graph that represents agent 8’s knowledge of the team at time C as G8C =
{
� 8C , +

8
C

}
.

Transmission-Response Protocol. The GNN outlined in the previous section is responsible for deciding

who a node should attempt to communicate with, if at all, at a given timestep. In this section we detail the

communication protocol that executes these plans. The protocol is divided into twomain steps: a transmission

phase, following the output of the GNN as one might expect, and a response phase, where certain recipients

64



of the transmission are able to respond. The addition of this response phase provides the transmitter with

the ability to seek out information by targeting certain agents to exchange information with, a behavior that

becomes valuable in the following section on reinforcement learning.

In the response phase, those agents that receive the packet for which they are the intended recipients,

∀ 9 s.t. ( 9 ∈ '8C ) ∧ ( 9 ∈ (8C ), are able to respond by transmitting a message back to the set of original

transmitter(s), indicated by (̄ 9C . Note that at all times an agent can only receive at most one transmission

at a time. This is a fundamental limitation in ad-hoc networks with a shared medium. Furthermore, two

transmissions targeting the same destination will likely result in a packet collision with no data successfully

decoded at the receiver. In the response phase, we assume that if an agent is able to respond, it will attempt

to do so. Recall that agents other than those who are the designated recipients can also decode transmitted

messages and update their data structure accordingly. This set of agents, called eavesdroppers, are described

by ∀ 9 s.t. ( 9 ∈ '8C ) ∧ ( 9 ∉ (8C ).

We summarize the design of our protocol in Alg. 4. A communication time window C consists of both

a transmission and a response phase. At the beginning of a window, agents first update their own state

using local observations. Then, they pass their updated data structure into the local communication policy to

output a set of intended recipients for their transmission. If this set consists only of the agent itself, the agent

chooses not to communicate during the given transmission phase. Agents then transmit to their intended

recipients. For communications that are received above the SINR threshold, agents will compare the contents

of the communication to their own local data structure, updating it with any new information received. Once

data structure updates from the transmission phase conclude, the response phase commences. An agent will

then attempt to respond back to the agent it received a transmission from, if at all. All responses are made

concurrently. Again, for successful responses received above the SINR threshold, the data structure updating

procedure occurs again.

Reinforcement Learning. Finally, with the communication protocol in place, we turn to our attention to

finding a solution. To solve the problem in (5.10) via reinforcement learning, we use the Proximal Policy

Optimization algorithm [42] and parametrize both the policy and value functions as graph neural networks to

take advantage of the modular nature of the data distribution task.

The policy and value architectures are two separate neural networks, parametrized as as non-linear GNNs

described by Eq. 1.12 of Section C. Both models have 5enc, 5dec and �# as 3 layer MLPs with 64 hidden
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units, and a ReLU activation only after the first two layers. For the policy, 5out is a linear function that reduces

the high-dimensional latent space vectors to the required low-dimensional output, the logits of a Boltzmann

distribution. Using the Gumbel-softmax, we use the logits to generate a discrete distribution over potential

actions. At each timestep, each robot samples from this distribution to decide the recipient of its transmission.

Also included as an action is the option for the agent not to transmit at the current timestep. For the value

function, 5out outputs 1 scalar per agent, which are summed to compute the team’s value estimate.

Unless noted otherwise, we use a receptive field of 5 across all experiments. Each model was trained

using an open source implementation of PPO [96] using 2 × 106 observations. We use an Adam optimizer

with step size 1× 10−4 that is decayed by a factor of 0.95 for every 500 steps, and a batch size of 64. All input

features were normalized by the mission area and the duration of the mission where relevant prior to being

input to the neural network.

Simulations. To evaluate our data distribution system, we conducted simulationswith a robot team performing

three main tasks. The first two tasks serve to establish performance baselines and involve the agents passing

information while stationary and while moving with random velocities. In the third task we use our system

in a flocking maneuver, where each agent sets its own velocity according to its knowledge of the velocity of

the rest of the team. In this case, global information about the velocity of each member of the team must be

distributed in a timely manner so that the team converges on a common velocity before any agents can wander

off. In each case, we report the age of information achieved by our system compared with a suite of other data

distribution approaches outlined in Section B.

Agent Dynamics. In simulation we treat each robot as a point mass in R2 with first-order dynamics described

by:

p8C+1 = p8C + v8CΔC, v8C+1 = v8C + u8CΔC (5.11)

where for agent 8 at time C, p8C ∈ R2 is the agent’s position and v8C ∈ R2 is the agent’s velocity. An agent’s local

state is described by the 4-dimensional column vector x8C := [p8C ; v8C ] for agent 8 at time C. This is the local state

the agent transmit to others.

For the second task involving random motion, we use control inputs sampled uniformly according to

u8C ∼ N (0, �<0G/3). The control inputs for this task do not rely on the performance of the data distribution
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algorithm. In addition, agent velocities are clipped to the interval (−+<0G , +<0G) and velocities are also

reflected when agents come into contact with the boundaries of the mission area, (−%<0G , %<0G), described

in the following section.

In the flocking task, agents seek consensus in velocities, as can be seen in example in Fig. 5.2. This task

is sensitive to latency in the communication among fast-moving agents, so data distribution is essential for it

success [30]. Agent 8 runs a controller based on its observations of the team after the initial timestep ) 8, 90 ,

F 8
C = { 9 ∈ A s.t. ) 8, 9 > ) 8, 90 }, which computes the difference between the agent’s current velocity and the

average velocities among all observed agents:

u8C :=
1
|F 8
C |

∑
9∈F 8C


0 0 1 0

0 0 0 1

 ×
(
"
8, 9
C − x8C

)
(5.12)

This is a variant of the task proposed in [52] but without control of agent spacing.

For amodel trained to execute data distribution for flocking, we can quantify not only the age of information

cost in (5.10), but we can also benchmark performance on the flocking task itself [30], quantifying the variance

in agents’ velocities:

� =
1
|A|

∑
C ∈T

∑
8∈A

v8C − 1
|A|

[ ∑
9∈A

v 9C

]2

(5.13)

These two performance metrics for the flocking task are heavily correlated, but this may not be true for other

tasks, in which low-latency information may be less important.

Mission Specification. The team of 40 robots operates in a mission area of 1 km2, where robots’ initial

positions were generated uniformly at random within the mission space. For teams of other sizes, the mission

area is changed to maintain a fixed agent density of 40 agents per 1 km2. For mobile agents, the velocity is

provided as a ratio of the maximum distance the agent could travel across the mission area during the mission.

The default velocity ratio is 0.15, corresponding to +<0G = 3 m/s. The maximum acceleration is set to be

�<0G = 20m/s2 for all experiments with mobile teams.

We allot a communication time window of 100ms, in which both a request and response is made. In

the case of random flooding, two requests are made. Each mission is 500 steps long, allowing 500 rounds

of communication among agents. The default maximum communication range for agents is 250 meters,

which we plot in normalized units as 0.25 of the mission distance. Team positions were re-initialized until
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the communication graph had algebraic connectivity at the initial timestep, assuming a disk communication

model with a range of 250 m. Across all experiments, we maintain a SINR threshold of 1 dBm, an additive

white Gaussian noise of -50 dBm, and a system center frequency of 2.4 GHz.

Baselines. Data distribution is a regular part of many ad-hoc routing protocols. Thus, we compare our

learned approach to three representative baselines inspired by such protocols: random flooding, round robin,

and minimum-spanning tree.

Flooding is perhaps the most popular data distribution method used in ad-hoc routing protocols. The

simplest form involves repeatedly rebroadcasting a message originating at a source node until it has reached

every agent in the network. More advanced variants seek to improve inefficiencies by introducing rules

governing which nodes should participate in rebroadcasting. In our simulations, we employ random flooding,

which instructs agents to rebroadcast a message with some probability ? [85]. While flooding in ad-hoc

protocols often happens periodically to update network topology information, data distribution in the context

of robot teams happens continuously, as the state information of each agent is constantly evolving. Thus,

for our problem, the choice a node makes is whether to broadcast the latest information it has gathered,

including what it has received from neighbors (i.e. rebroadcasting), or stay silent and allow other nodes to

transmit. Since each timestep of our protocol involves a transmission and response, we allow random flooding

to complete two iterations over the same period.

The second method we compare against is round robin. In this approach, a central agent is chosen as a base

station and at each timestep, one other agent exchanges data structures with it, reminiscent of a time-division

multiple access approach [97]. Unlike our approach and random flooding, round robin requires centralized

coordination to identify the base station agent and schedule communications of other agents with the base

station. Round robin follows the same transmit response used by our approach with (8C always populated by

the base station.

Finally, we also implement a Minimum Spanning Tree (MST) baseline where each agent attempts to

exchange information with their parent in the spanning tree with probability ?, remaining silent otherwise.

This baseline seeks to capitalize off the fact that a MST minimizes the total edge length required to connect all

the agents in the network. As such, the edges of the tree offer an efficient way to pass information throughout

the network. One limitation of this approach is that it requires global knowledge of all agents’ locations

from the start of the episode. At a given timestep, the transmissions between child and parent follow the
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transmit-response format used by our method.

C Results

First, we highlight the impact of the GNN’s receptive field on its performance on the data distribution task,

and characterize the impact of transmission power on the overall task difficulty. Next, we examine how the

GNN can generalize to larger team sizes. Finally, we benchmark the GNN as the data distribution for a

latency-sensitive flocking task.

Stationary Teams. Our first experiment investigates the effect of receptive field on the performance of the

GNN controller as shown in Fig. 5.3. We observe a general trend of improved performance with an increase

in the receptive field of the architecture, which allows the model to reason about clusters of agents in its buffer.

The GNNs with receptive fields of two or greater surpass the performance of Round Robin, MST and Random

Flooding baselines.

Fig. 5.4 demonstrates the effect of varying the transmission power ratio. As the maximum transmission

range increases, the problem becomes exponentially easier. However, many multi-robot teams operate

in settings where hardware or environmental constraints restrict transmission distance. In these settings,

especially when agents can only communicate at 25% of the mission distance, our protocol performs best,

having the greatest margin from the baseline approaches. The introduction of structure in how data propagated

throughout the network allows our protocol to establish known routes of data flow. Instead of relying on direct

communication with agents from the other side of the network, our protocol learns to leverage the established

routes and often only needs short-range communications to access these.

Mobile Teams. Next, we examine the performance of the GNN in data distribution for mobile teams. Fig. 5.5

demonstrates the generalization of a model trained on 40 mobile agents (GNN Generalization) to team sizes

of 10 up to 80. For comparison, we also show the performance of a model trained on the corresponding team

size (GNN Trained). We find that both models exceed the baselines for large team sizes. The transference

property of Graph Neural Networks allows the model trained on a team of 40 to scale to teams of up to 80.

With team sizes greater than or equal to 80 agents, we find that the O( |A|2) memory requirements make

training difficult, and our generalized model begins to perform best.

Fig. 5.6 examines the flocking application and compares GNN models trained with the task-specific
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velocity variance cost (3.5) against models trained with the age of information cost (5.10). Models trained

with Age of Information cost perform better on the flocking task than models trained via the variance of

velocities cost because the Age of Information provides a more direct signal for communication decisions.

For using reinforcement learning for other problems with a data distribution component, age of information

may be a highly-informative reward signal that could be used in conjunction with the task-specific reward

function. We observe that at higher velocities, the performance of both GNN controllers begins to stray

away from the baselines because the initial route discovery phase is more challenging and agents may

stray completely out of range before establishing communications. Providing information about the initial

configuration of the team may be able to allow the GNN to improve performance from the initial time step.

D Summary

This work introduces a task-agnostic, decentralized method for data distribution in ad-hoc networks. We

demonstrate that maintaining routes of data dissemination can help agents reason about multi-hop communi-

cation, resulting in more up-to-date network information as compared to industry-standard approaches. This

performance extends to mobile robot teams, and transfers well for larger team sizes and the flocking task.

We envision our protocol being applied to any collaborative multi-agent task reliant on sharing time-sensitive

local observations across a wireless network.

In future work, we would like to run physical experiments with asynchronous execution. We believe

another natural extension of this project is to not only consider when and with whom to communicate, but

also what to communicate. At each time step, each agent would decide which portions of their data structures

are most essential to communicate for mission success. Lastly, the introduction of Graph Recurrent Neural

Networks (GRNNs) to our system would assist in handling time-varying communication needs.
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Agent 0’s Local Data Structure
ID TS State Parent LC
0 4 "

0,0
4

1 2 "
0,1
4 0 3

2 2 "
0,2
4 3

3 4 "
0,3
4 0

4 3 "
0,4
4 3 1

Tree Representation of Agent 0’s Local Data Structure at t = 4

t = 1 t = 2

t = 3 t = 4

Communication
Rounds

0

4 1

3 2

0

4 1

3 2

0

4 1

3 2

0

4 1

3 2

0

4 1

3 2

Figure 5.1. After four rounds of communication, agent 0 receives data from all other agents. Because parent references
are also transmitted, agent 0 is able to use its data structure to reconstruct the spanning tree consisting of the most recent
information of other agents in the network. The table heading abbreviations are: TS - Last Observed Timestep, () 8. 9C ),
State - Agent State Information ("8. 9C ), Parent - Data Flow Parent, LC - Last Attempted Communication.
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Algorithm 4 Data Distribution Protocol
Require: A, c, 5 ,ΔC

while true do
Transmission phase begins, C ⇐ C + ΔC
Agents update current state in local data structures

"
8,8
C = x8C , )

8,8
C = C ∀8 ∈ A, C ≥ 0

Agents evaluate transmission policy using local data structures

?(: ∈ (8C ) = c
(
{) 8, 9C , "

8, 9
C , %

8, 9
C , !

8, 9
C } 9∈A

)
∀8, : ∈ A

Transmissions are subject to interference

{?( 9 ∈ '8C )}8∈A = 5
(
{(8C , x8C }8∈A

)
Agents update local data structures, ∀8, : ∈ A, 9 ∈ '8C

)
8,:
C < )

9 ,:
C =⇒ () 8,:C = )

9 ,:
C ) ∧ ("

8,:
C = "

9 ,:
C ) ∧ (%

8,:
C = %

9 ,:
C )

Response phase begins, C ⇐ C + ΔC
Recipients transmit responses

( 9 ∈ '8C ) ∧ ( 9 ∈ (8C ) =⇒ 8 ∈ (̄ 9C , ∀ 9 ∈ A

Responses are subject to interference

{?(8 ∈ '̄ 9C )} 9∈A = 5

(
{(̄ 9C , x

9
C } 9∈A

)
Agents update local data structures, ∀8, : ∈ A, 9 ∈ '̄8C

)
8,:
C < )

9 ,:
C =⇒ () 8,:C = )

9 ,:
C ) ∧ ("

8,:
C = "

9 ,:
C ) ∧ (%

8,:
C = %

9 ,:
C )

end while
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Figure 5.2. After starting with random velocities, agents communicate and eventually come to a global consensus.
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Figure 5.3. For stationary agents, as the GNN receptive field is increased for the linear and non-linear models, AoI
performance improves and exceeds MST and Round Robin.
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Figure 5.4. For stationary agents, as agent transmission power increases, the data distribution task incurs lower latency
on average for both the baseline controllers and the learner.
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Figure 5.5. GNN models trained on teams of 40 agents performing a random walk with a velocity ratio of 0.15 generalize
well to larger team sizes.
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(a) Testing Age of Information Cost
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(b) Testing Velocity Variance Cost

Figure 5.6. As agent velocity increases in the flocking task, the learner’s performance begins to decline. Testing the
velocity variance, the controller trained using the AoI reward performs better than the controller trained using Velocity
Variance cost.
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Part IV

Towards Distributed Learning
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Chapter 6

Kernel Q-Learning in Continuous Markov Deci-

sion Problems

Markov Decision Problems offer a flexible framework to address sequential decision making tasks under

uncertainty [98], and have gained broad interest in robotics [99], control [100], and artificial intelligence

[101]. Despite this surge of interest, fewworks in reinforcement learning address the computational difficulties

associated with continuous state and action spaces in a principled way that guarantees convergence. The goal

of this work is to develop new reinforcement learning tools for continuous problems which are provably stable

and whose complexity is at-worst moderate.

In the development of stochastic methods for reinforcement learning, one may attempt to estimate the

transition density of the Markov Decision Process (MDP) (model-based [102]), perform gradient descent

on the value function with respect to the policy (direct policy search [103]), and pursue value function

based (model-free [104, 105]) methods which exploit structural properties of the setting to derive fixed point

problems called Bellman equations. We adopt the latter approach in this work [106], motivated by the fact that

an action-value function tells us both how to find a policy and how to evaluate it in terms of the performance

metric we have defined, and that a value function encapsulates structural properties of the relationship between

states, actions, and rewards.

It is well-known that approaches featuring the “deadly triad” [101] of function approximation, bootstrap-

ping (e.g. temporal-difference learning), and off-policy training are in danger of divergence, and the most
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well-understood techniques for ensuring convergence in a stochastic gradient descent context are those based

on Gradient Temporal Difference (GTD) [107]. Though the final algorithm looks similar, our approach could

be considered as an alternative formulation and analysis of the GTD algorithms centered on continuous state

and action spaces with nonlinear function approximation.

To frame our approach, consider the fixed point problem defined by Bellman’s optimality equation [108].

When the state and action spaces are finite and small enough that expectations are computable, fixed point

iterations may be used. When this fails to hold, stochastic fixed point methods, namely,&-learning [105], may

be used, whose convergence may be addressed with asynchronous stochastic approximation theory [109, 110].

This approach is only valid when the action-value (or &) function may be represented as a matrix. However,

for continuous the state and action spaces, the &-function instead belongs to a generic function space.

In particular, to solve the fixed point problem defined by Bellman’s optimality equation when spaces

are continuous, one must surmount the fact that it is defined for infinitely many unknowns, one example of

Bellman’s curse of dimensionality [108]. Efforts to sidestep this issue assume that the &-function admits

a finite parameterization, such as a linear [107] or nonlinear [111] basis expansion, is defined by a neural

network [2], or that it belongs to a reproducing kernel Hilbert Space (RKHS) [112]. In this work, we

adopt the latter nonparametric approach, motivated by the fact that combining fixed point iterations with

different parameterizations may cause divergence [113, 114]. To ensure algorithm stability, we tie&-function

parameterization to the stochastic update [115].

Our main result is a memory-efficient, non-parametric, stochastic method that converges to a fixed point

of the Bellman optimality operator almost surely when it belongs to a RKHS. We obtain this result by

reformulating the Bellman optimality equation as a nested stochastic program (Section A) This problem has

been addressed in finite settings with stochastic quasi-gradient (SQG)methods [116] which use two time-scale

stochastic approximation to mitigate the fact that the objective’s stochastic gradient not available due to its

dependence on a second expectation, which is referred to as the double sampling problem in [107].

Here, we use a non-parametric generalization of SQG for &-learning in infinite MDPs (Section B),

motivated by its success for policy evaluation in finite [107] and infinite MDPs [117]. However, a function

in a RKHS has comparable complexity to the number of training samples processed, which is in general

infinite, an issue is often ignored in kernel methods for Markov decision problems [118, 119]. We address this

bottleneck (the curse of kernelization) by requiring memory efficiency in both the function sample path and in
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its limit through the use of sparse projections which are constructed greedily via matching pursuit [120, 121],

akin to [122, 117]. Greedy compression is appropriate since (a) kernel matrices induced by arbitrary data

streams will likely become ill-conditioned and hence violate assumptions required by convex methods [123],

and (b) parsimony is more important than exact recovery as the SQG iterates are not the target signal but rather

a stepping stone to Bellman fixed point. Rather than unsupervised forgetting [124], we tie the projection-

induced error to guarantee stochastic descent [122], only keeping dictionary points needed for convergence.

We note this projection operator was originally developed based upon projecting stochastic gradients, and

whose performance may be related to a stochastic descent criterion [122]. Here we consider a generalization

based upon stochastic quasi-gradients and tune projection-induced error to ensure stochastic quasi-descent

criterion, as necessitated by the two time-scale nature of compositional approaches to &-learning.

As a result, we conduct functional SQG descent via sparse projections of the SQG. This maintains a

moderate-complexity sample path exactly towards &∗, which may be made arbitrarily close to a Bellman

fixed point by decreasing the regularizer. In contrast to the convex structure in [117], the Bellman optimality

equation induces a non-convex cost functional, which requires us to generalize the relationship between SQG

for non-convex objectives and coupled supermartingales in [125] to RKHSs. In doing so, we establish that

the sparse projected SQG sequence converges almost surely (Theorem 1) to the Bellman fixed point with

decreasing learning rates (Section D) and to a small Bellman error whose magnitude depends on the learning

rates when learning rates are held constant (Theorem 2). Use of constant learning rates allows us to further

guarantee that the memory of the learned & function remains under control. Moreover, on Continuous

Mountain Car [126] and the Inverted Pendulum [127], we observe that our learned action-value function

attains a favorable trade-off between memory efficiency and Bellman error, which then yields a policy whose

performance is competitive with the state of the art in terms of episode average reward accumulation. Results

for Pendulum are given in Appendix C

In contrast to [117], in addition to non-convexity, challenges related to the explore-exploit tradeoff and the

need to optimize the & function in the inner-loop of the algorithm are present. The first we experimentally

overcome using replay buffers and approximate greedy policies, whereas the ability to tractably deal with the

latter is unique to the RKHS parameterization. In principle, one could employ [125] to solve & learning over

continuous spaces, using a linear basis expansion over a sufficiently large number of features. However, for

problems where the number of episodes required for training is large, one must use a fine-resolution grid over
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the entire state and action space. In theory, the resolution must go to null as the number of samples becomes

large, so that the number of features approaches infinity. Doing so, unfortunately, results in retaining many

extraneous features in the function parameterization and a loss of interpretability. We these tradeoffs in Sec.

E. In particular, in Table 6.1 one may observe that “Budgeted" [128] and “Discretized" approaches [125] yield

a less favorable tradeoff of complexity, convergence accuracy, and reward accumulation relative to variants of

KQ Learning.

This chapter was first published as [129], with additional theoretical and experimental results pro-

vided in [130]. An open-source implementation of our work can be found at https://github.com/

katetolstaya/kernelrl.

A Markov Decision Processes

We model an autonomous agent in a continuous space as a Markov Decision Process (MDP) with continuous

states s ∈ S ⊂ R? and actions a ∈ A ⊂ R@ . When in state s and taking action a, a random transition to

state s′ occurs according to the conditional probability density P(s′ |s, a). After the agent transitions to a

particular s′ from s, the MDP assigns an instantaneous reward A (s, a, s′), where the reward function is a map

A : S ×A × S → R whose range is assumed bounded throughout by a constant ' < ∞.

In Markov Decision problems, the goal is to find the sequence of actions defined by FC -adapted processes

{aC }∞C=0 so as tomaximize the infinite horizon accumulation of rewards, i.e., the value function: + (s, {aC }∞C=0) :=

Es′ [
∑∞
C=0 W

CA (sC , aC , s′C ) | s0 = s, {aC }∞C=0]. By FC -adapted process, we mean each aC is selected only on the

basis of past rewards A (sD , aD , s′D), states sD , and actions aD for D < C. The expectation is an integral over the

Markov transition dynamics conditioned on a fixed action sequence and initial state. Moreover, WC ∈ (0, 1) is

a discount factor that determines the degree of farsightedness of the policy. The action-value function&(s, a)

is the conditional mean of the value function given the initial action a0 = a:

&(s, a, {aC }∞C=1) := Es′

[ ∞∑
C=0

WCA (sC , aC , s′C ) | s0 = s, a0 = a, {aC }∞C=1

]
(6.1)

We define &∗ (s, a) as the maximum of (6.1) with respect to the action sequence. The reason for defining
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action-value functions is that the optimal &∗ yields the optimal policy c∗ as

c∗ (s) = argmax
a

&∗ (s, a) . (6.2)

where a policy is a map from states to actions: c: S → A. Thus, finding &∗ solves the MDP. Value-function

based approaches to MDPs reformulate (6.2) by shifting the index of the summand in (6.1) by one, use the

time invariance of the Markov transition kernel, and the homogeneity of the summand, to derive the Bellman

optimality equation:

&∗ (s, a) = Es′
[
A (s, a, s′) + Wmax

a′
&∗ (s′, a′)

�� s, a] . (6.3)

The expectation is taken with respect to the conditional distribution P(3s′ | s, a) of the state s′ given the state

action pair (s, a). The right side of (6.3) defines the Bellman optimality operator B∗: B(S ×A) → B(S ×A)

over B(S ×A), the space of bounded continuous action-value functions Q: B(S ×A) → R:

(B∗&) (s, a) :=
∫
S

[
A (s, a, s′) + Wmax

a′
&(s′, a′)

]
P(3s′ | s, a) . (6.4)

[100] [Proposition 5.2] establishes that the fixed point of (6.4) is the optimal action-value function&∗. Hence

we seek to compute the fixed point of (6.4) for all (s, a) ∈ S ×A.

Compositional Stochastic Optimization. The functional fixed point equation in (6.3) has to be simultane-

ously satisfied for all state action pairs (s, a). Alternatively, we can integrate (6.3) over the joint distribution of

the random pair (s, a) which we assume forms an irreducible Markov chain with unique stationary probability

distribution to write a nested stochastic optimization problem [125, 122, 117]. To do so, begin by defining

the function

5 (&; s, a) = Es′
[
A (s, a, s′) + Wmax

a′
&(s′, a′) −&(s, a)

�� s, a] , (6.5)

and consider the ergodic stationary distribution of the Markov chain P(3s, 3a) w.r.t. (s, a) to define ∗

! (&) = 1
2
Es,a

[
5 2 (&; s, a)

]
. (6.6)

∗That P(3s, 3a) defines the ergodic stationary distribution of the Markov chain over the process (s, a) ensures that considering
Galerkin relaxation (6.7) of (6.3) is sufficient. See [131][Sec. 2.2] for further details.
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Comparing (6.5) with (6.3) permits concluding that Q∗ is the unique function that makes 5 (&; s, a) = 0 for all

(s, a). It then follows that Q∗ is the only function that makes the functional in (6.6) take the value ! (&) = 0.

As this functional is also nonnegative, we can write

&∗ = argmin
&∈B (S×A)

! (&) . (6.7)

Computation of the optimal policy is thus equivalent to solving the optimization problem in (6.7). This

requires a difficult search over all bounded continuous functions B(S ×A). We reduce this difficulty through

a hypothesis on the function class.

ReproducingKernel Hilbert Spaces. We restrictB(S×A) to a Hilbert spaceH equipped with a reproducing

kernel, an inner product-like map ^ : (S ×A) × (S ×A) → R such that

(i) 〈 5 , ^((s, a), ·)〉H = 5 (s, a), (ii) H = span{^((s, a), ·)} (6.8)

In (6.8), property (i) is called the reproducing property, and is derived from Riesz Representation Theo-

rems [132]. Replacing 5 by ^((s′, a′), ·) in (6.8) (i) yields the expression 〈^((s′, a′), ·), ^((s, a), ·)〉H =

^((s′, a′), (s, a)), the origin of the term “reproducing kernel.” Moreover, property (6.8) (ii) states that func-

tions 5 ∈ H admit a basis expansion in terms of kernel evaluations (6.9). These spaces are called reproducing

kernel Hilbert spaces (RKHSs).

We may apply the Representer Theorem to transform the functional problem into a parametric one

[133, 134]. In the RKHS, the optimal & function takes the following form

&(s, a) =
#∑
==1

F=^((s=, a=), (s, a)) (6.9)

where (s=, a=) is a sample of state-action pairs (s, a) and F= is a scalar weight. & ∈ H is an expansion of

kernel evaluations only at observed samples.

One complication of the restriction B(S × A) to the RKHS H is that this setting requires the cost to be

differentiable with Lipschitz gradients, but the definition of ! (&) [cf. (6.6)] defined by Bellman’s equation

(6.4) is non-differentiable due to the presence of the maximization over the & function. This issue may be

addressed by either operating with approximate smoothed gradients of a non-differentiable function [135]
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or by approximating the non-smooth cost by a smooth one. We adopt the latter approach by replacing the

maxa&(s, a′) term in (6.6) by the softmax over continuous range A, i.e.

softmaxa′∈A&(s′, a′) =
1
[

log
∫

a′∈A
4[& (s

′,a′)3a′ (6.10)

and define the [-smoothed ([ > 0 is a parameter) cost ! (&) as the one where the softmax (6.10) in lieu of the

hard maximum in (6.6). Subsequently, we focus on smoothed cost ! (&).

In this work, we restrict the kernel used to be in the family of universal kernels, such as a Gaussian/Radial

Basis Function (RBF) kernel with constant diagonal covariance Σ,

^((s, a), (s′, a′)) = exp
{
−1

2
((s, a) − (s′, a′)) Σ ((s, a) − (s′, a′)))

}
(6.11)

motivated by the fact that a continuous function over a compact set may be approximated uniformly by a

function in a RKHS equipped with a universal kernel [136].

To apply the Representer Theorem, we require the cost to be coercive in & [134], which may be satisfied

through use of a Hilbert-norm regularizer, so we define the regularized cost functional � (&) = ! (&) +

(_/2)‖&‖2H and solve the regularized problem (6.7), i.e.

&∗ = argmin
&∈H

� (&) = argmin
&∈H

! (&) + _
2
‖&‖2H. (6.12)

Thus, finding a locally optimal action-value function in an MDP amounts to solving the RKHS-valued

compositional stochastic program with a non-convex objective defined by the Bellman optimality equation

(6.4). This action-value function can then be used to obtain the optimal policy (6.2). Next we turn to iterative

stochastic methods to solve (6.12).

We point out that this is a step back from the original intent of solving (6.7) to then find optimal policies

c∗ using (6.2). This is the case because the assumption we have made about &∗ being representable in

the RKHS H need not be true. More importantly, the functional � (&) is not convex in & and there is no

guarantee that a local minimum of � (&) will be the optimal policy&∗. This is a significant difference relative

to policy evaluation problems [117]. In particular, the gap between the optimizer of ! (&) and � (&) comes

from both nonconvexity, where it can be interpreted as a form of estimation error (bias), and the hypothesis
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on the function class, a form of approximation error (variance) [137]. However, when a universal kernel is

used [136], the approximation error vanishes. On the other hand, overcoming nonconvexity in Q learning

over continuous spaces is challenging, and requires investigation of random perturbations of search directions

[138, 139], which is left to future work.

B Stochastic Quasi-Gradient Method

To solve (6.12), we propose applying a functional variant of stochastic quasi-gradient (SQG) descent to the

loss function � (&). The reasoning for this approach rather than a stochastic gradient method is the nested

expectations cause the functional stochastic gradient to be still dependent on a second expectation which is not

computable, and SQG circumvents this issue. Then, we apply the Representer Theorem (6.9) (“kernel trick”)

to obtain a parameterization of this optimization sequence, which has per-iteration complexity. We then

mitigate this untenable complexity growth while preserving optimality using greedy compressive methods,

inspired by [122, 117].

To find a stationary point of (6.12) we use quasi-gradients ∇&� (&) of the functional � (&) relative to the

function& in an iterative process. We introduce an iteration index C and let&C be the estimate of the stationary

point at iteration C. Consider a random state action pair (sC , aC ) independently and randomly chosen from the

distribution P(3s, 3a). Action aC is executed from state sC resulting in the system moving to state s′C . This is

recorded along with reward A (sC , aC , s′C ) and the action a′C that maximizes &C when the system is in state s′C ,

i.e.,

a′C := argmax
b

&C (s′C , b). (6.13)

The state (S) sC , action (A) aC , reward (R) A (sC , aC , s′C ), state (S) s′C , action (A) a′C together are called the SARSA

tuple. SARSA realizations are required for practical implementation of Q learning, and thus a standard

bookkeeping detail.

Further consider the expressions for � (&) in (6.12) and ! (&) in (6.6) and exchange order of the expectation
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and differentiation operators† to write the gradient of � (&) as

∇&� (&C ) = EsC ,aC

[
5 (&C ; sC , aC ) × ∇& 5 (&C ; sC , aC )

]
+ _&C , (6.14)

where& ∈ H and ∇&� (&) belongs to an RKHS (6.8). To obtain ∇& 5 (&) in (6.14), we address differentiation

of the softmax and its approximation w.r.t. the exact maximum.

Remark 1 (Softmax Gradient Error) The functional derivative of (6.10) takes the form

∇&softmaxa′∈A&(s′, a′) =
∫
a′∈A 4

[& (s′,a′) ^(s′, a′, ·)3a∫
a′∈A 4

[& (s′,a′)3a′
(6.15)

by applying Leibniz Rule, Chain Rule, and the reproducing property of the kernel. Moreover, a factor of [

cancels. Observe that as [→∞, the softmax becomes closer to the exact (hard) maximum, and the integrals

in (6.15) approach unit, and the only term that remains is ^(s′, a′, ·), where a′ = argmaxb∈A&(b, s′). This

term may be used in place of (6.15) to avoid computing the integral, and yields the functional gradient of the

exact maximum instead of the softmax. Doing so comes at the cost of computing of the maximizer of the &

function a′.

Observe that to obtain samples of ∇&� (&, s, a, s′), i.e., the terms inside the outer expectation in (6.14), we

require two different queries to a simulation oracle: one to approximate the inner expectation over the Markov

transition dynamics defined by s′, and one for each initial pair s, a which defines the outer expectation. This

complication, called the “double sampling problem," was first identified in [116, 140], has been ameliorated

through use of two time-scale stochastic approximation, which may be viewed as a stochastic variant of quasi-

gradient methods [125]. We choose to build up the total expectation of one of the terms in (6.14) while doing

stochastic descent with respect to the other. In principle, it is possible to build up the expectation of either

term in (6.14), but the mean of the difference of kernel evaluations is of infinite complexity. On the other

hand, the temporal action difference, defined as the difference between the action-value function evaluated at

state-action pair (s, a) and the action-value function evaluated at next state and the instantaneous maximizing

action (s′, a′):

X := A (s, a, s′) + W&(s′, a′) −&(s, a) (6.16)
†This interchange of expectation and differentiation is valid whenever the conditions for the Dominated Convergence Theorem are

satisfied. One sufficient condition is that the expression inside the expectation in (6.6) is uniformly bounded. We explicitly ensure this
restriction by restricting our & function estimates in the subsequent section to a compact function space.
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is a scalar, and thus so is its total expected value. Therefore, for obvious complexity motivations, we build

up the total expectation of (6.16). To do so, we propose recursively averaging realizations of (6.16) through

the following auxiliary sequence IC , initialized as null I0 = 0:

XC := A (sC , aC , s′C ) + W&(s′C , a′C ) −&(sC , aC ) , IC+1 = (1 − VC )IC + VCXC (6.17)

where (sC , aC , s′C )
8.8.3.∼ (s, a, s′) and VC ∈ (0, 1) is a learning rate. In practice, one may obtain i.i.d. samples,

but doing so may not yield sufficient visitation to state-action pairs associated with high rewards. Due to

this complication, we experimentally investigate deviations from i.i.d. via replay buffers and approximately

greedy policies – see Sec. E and Appendix C.

To define the stochastic descent step, we replace the first term inside the outer expectation in (6.14) with

its instantaneous approximation [W^((s′, a′), ·) − ^((s, a), ·)] evaluated at a sample triple (sC , aC , s′C ), yielding

the stochastic quasi-gradient step:

&C+1 = (1 − UC_)&C (·) − UC
(
W^(s′C , a′C , ·) − ^(sC , aC , ·)

)
IC+1 (6.18)

where the coefficient (1−UC_) comes from the regularizer and UC is a positive scalar learning rate. Moreover,

a′C = argmaxb&C (s′, b) is the instantaneous&-function maximizing action. Now, using similar logic to [124],

we may extract a tractable parameterization of the infinite dimensional function sequence (6.18), exploiting

properties of the RKHS (6.8).

Kernel Parametrization. Suppose &0 = 0 ∈ H. Then the update (6.18) at time C implies the function &C is

a kernel expansion of data (sC , aC , s′C )

&C (s, a) =
2(C−1)∑
==1

F=^ (v=, (s, a)) = w)C ^Xt ((s, a)) (6.19)

The kernel expansion in (6.19), as an instantiation of the Representer Theorem (6.9), together with update

(6.18), yields the fact that functional SQG in H yields updates on the kernel dictionary XC ∈ R?×2(C−1) and

coefficients wC ∈ R2(C−1) as

XC+1 =
[
XC , (sC , aC ), (s′C , a′C )

]
, wC+1 = [(1 − UC_)wC , UC IC+1,−UCWIC+1] (6.20)
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Algorithm 5 Destructive Kernel Orthogonal Matching Pursuit (KOMP)
Input: function &̃ defined by dict �̃ ∈ R?×"̃ , F̃ ∈ R"̃ , approx. budget nC > 0

Initialize : & = &̃, dictionary � = �̃ with indices I, model order " = "̃ , coeffs F = F̃.
1: while candidate dictionary is non-empty I ≠ ∅ do
2: for 9 = 1, . . . , "̃ do
3: Find minimal approximation error with dictionary element 3 9 removed

W 9 = minFI\{ 9} ∈R"−1 ‖&̃(·) −
∑
:∈I\{ 9 } F:^(3: , ·)‖H

4: end for
5: Find dictionary index minimizing approximation error : 9∗ = argmin 9∈I W 9
6: if minimal approximation error exceeds threshold W 9∗ > nC then
7: break
8: else
9: Prune dictionary � ← �I\{ 9∗ }
10: Revise set I ← I\{ 9∗} and model order " ← " − 1
11: Compute updated weights F defined by the current dictionary �

w = argminw∈R" ‖&̃(·) − F) ^� (·)‖H
12: end if
13: end while
14: return +, �, F of model order " ≤ "̃ such that ‖& − &̃‖H ≤ nC

In (6.20), the dictionary XC ∈ R?×2(C−1) and the coefficient vector wC ∈ R2(C−1) are defined as

XC =
[
(s1, a1), (s′1, a

′
1), . . . , (sC−1, aC−1), (s′C−1, a

′
C−1)

]
, wC =

[
F1, . . . , F2(C−1)

]
(6.21)

and in (6.19), we introduce the notation v= = (s=, a=) for = even and v= = (s′=, a′=) for = odd. Moreover, in

(6.19), define the empirical kernel map associated with dictionary XC , defined as

^XC (·) =
[
(^((s1, a1), ·), ^((s′1, a

′
1), ·), . . . , . . . , ^((sC−1, aC−1), ·), ^((s′C−1, a

′
C−1), ·)

])
. (6.22)

Observe that (6.20) causes XC+1 to have two more columns than its predecessor XC . Define the model order

as the number of data points (columns) "C in the dictionary at time t, which for functional stochastic quasi-

gradient descent is "C = 2(C − 1). Asymptotically, the complexity of storing &C (·) is infinite, and even for

moderately large training sets is untenable. Next, we address this complexity blowup, inspired by [122, 117],

using greedy compression [120].

Sparse Stochastic Subspace Projections. Since the update step (6.18) has complexityO(C) due to the RKHS

parametrization, it is impractical in settings with streaming data or arbitrarily large training sets. We address
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this issue by replacing the stochastic quasi-descent step (6.18) with an orthogonally projected variant, where

the projection is onto a low-dimensional functional subspace of the RKHS HDC+1 ⊂ H

&C+1 = PHDC+1

[
(1 − UC_)&C (·) − UC (W^(s′C , a′C , ·) − ^(sC , aC , ·))IC+1)

]
(6.23)

where HDC+1 = span{((s=, a=), ·)}"C==1 for some collection of sample instances {(s=, a=)} ⊂ {(sC , aC )}D≤C . We

define ^D (·) = {^((s1, a1), ·) . . . ^((s" , a" ), ·)} and ^D,D as the resulting kernel matrix from this dictionary.

We seek function parsimony by selecting dictionaries D such that "C << O(C). Suppose that &C is parame-

terized by model points DC and weights wC . Then, we denote &̃C+1 (·) = (1 − UC_)&C (·) − UC (W^(s′C , a′C , ·) −

^(sC , aC , ·))IC+1) as the SQG step without projection. This may be represented by dictionary and weight vector

[cf. (6.20)]:

D̃C+1 =
[
DC , (sC , aC ), (s′C , a′C )

]
, w̃C+1 = [(1 − UC_)wC , UC IC+1,−UCWIC+1] , (6.24)

where IC+1 in (6.24) is computed by (6.17) using &C in (6.23):

XC := A (sC , aC , s′C ) + W&C (s′C , a′C ) −&C (sC , aC ) , IC+1 = (1 − VC )IC + VCXC . (6.25)

Observe that D̃C+1 has "̃C+1 = "C + 2 columns which is the length of w̃C+1. We proceed to describe the

construction of the subspaces HDC+1 onto which the SQG iterates are projected in (6.23). Specifically, we

select the kernel dictionaryDC+1 via destructive subset selection: we formDC+1 starting with the full dictionary

and sequentially removing elements. Specifically, we select a subset of "C+1 columns from D̃C+1 that best

approximates &̃C+1 in terms of Hilbert norm error. To accomplish this, we use kernel orthogonal matching

pursuit [122, 117] with error nC to find a compressed dictionary DC+1 from D̃C+1, the one that adds the latest

samples. For fixed dictionary DC+1, the coefficient update is a least-squares multiplication:

wC+1 = ^−1
DC+1DC+1^DC+1D̃C+1w̃C+1 (6.26)

We tune nC to ensure stochastic descent and finite model order. Due to the need to guarantee Assumption 1, i.e.,

ensuring ‖&C ‖ is bounded, we further require that (6.26) the coefficient vector is intersected with a finite-norm

ball, i.e., very large values are thresholded by a constant. Since in practice this thresholding is omitted and
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only used for ensuring boundedness, we do not comment further on this point outside of Assumption 1 and

(6.38).

We summarize the proposed method, KQ-Learning, in Algorithm 6, the execution of the stochastic

projection of the functional SQG iterates onto subspaces HDC+1 . We begin with a null function &0 = 0, i.e.,

empty dictionary and coefficients (Step 1). At each step, given an i.i.d. sample (sC , aC , s′C ) and step-size UC , VC

(Steps 2-5), we compute the unconstrained functional SQG iterate &̃C+1 (·) = (1−UC_)&C (·)−UC (W^(s′C , a′C , ·)−

^(sC , aC , ·))IC+1) parametrized by D̃C+1 and w̃C+1 (Steps 6-7), which are fed into KOMP (Algorithm 5) [122]

with budget nC , (Step 8). KOMP then returns a lower complexity estimate &C of &̃C that is nC away inH. The

complexity control properties of Algorithm 5 as a projection are illuminated next.

Remark 2 In [122][Section 4.3], the complexity of Algorithm 5 is characterized as depending on the model

order "C and the number of removed points /C as O("2
C /C ). Intuitively, this makes projections more costly

to compute when n is smaller, as this makes the model complexity increase.

That is, for constant step-size and compression parameter, Corollary 1 of [117] applies, which, together

with [141][Proposition 2.2], implies that maxC "C ≤ . [ Vn
U
]; . . is a constant that depends on kernel

hyper-parameters (e.g., Gaussian kernel bandwidth) and smoothness parameters of the objective w.r.t. the &

function, and ; = ? + @ is the parameter dimension.

By substituting this approximate expression into the aforementioned complexity analysis, we may obtain

an estimate of the effort required to compute Algorithm 5 as O(( U
n
)2;/C ). This indeed illuminates that for

small n , the projection becomes intractable, and confirms the motivation for holding constant both step-size

and compression budget. The performance tradeoffs of this selection are formalized in the subsequent section.

C Practical Considerations

The convergence guarantees for Algorithm 6 require sequentially observing state-action-next-state triples

(sC , aC , AC , s′C ) independently and identically distributed. Doing so, however, only yields convergence toward a

stationary point, which may or may not be the optimal& function. To improve the quality of stationary points

to which we converge, it is vital to observe states that yield reward (an instantiation of the explore-exploit

tradeoff). To do so, we adopt a standard practice in reinforcement learning which is to bias actions towards

states that may accumulate more reward.
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Algorithm 6 KQ-Learning
Input: �, {UC , VC }C=0,1,2..., &0 (·) = 0, �0 = [], F0 = [], I0 = 0
1: for C = 0, 1, 2, . . . do
2: Obtain sample (sC , aC , s′C ) via exploratory policy
3: Compute maximizing action, a′C (6.13)
4: Update temporal action diff. XC and aux. seq. IC+1 (6.25)
5: Compute functional stochastic quasi-grad. step

&̃C+1 = (1 − UC_)&C − UC IC+1
(
W^(s′C , a′C , ·) − ^(sC , aC , ·)

)
.

6: Update dictionary and weights (6.24)
7: Compress function using KOMP with budget nC = �U2

C

(&C+1, �C+1,wC+1) = KOMP(&̃C+1, �̃C+1, F̃C+1, nC )
8: end for
9: return &

Algorithm 7 Semi-Gradient Greedy KQ-Learning
Input: �, {UC , VC }C=0,1,2...
1: &0 (·) = 0, �0 = [], F0 = [], I0 = 0
2: for C = 0, 1, 2, . . . do
3: Obtain sample (sC , aC , s′C ) via greedy policy
4: Compute maximizing action:

a′C = cC (s′C ) = argmaxa&C (s′C , a)
5: Update temporal action diff. XC and aux. seq. IC+1

XC = A (sC , aC , s′C ) + W&C (s′C , a′C ) −&C (sC , aC ), IC+1 = (1 − VC )IC + VCXC
6: Compute update step

&̃C+1 = (1 − UC_)&C (·) + UC IC+1^(sC , aC , ·)
7: Update dictionary �̃C+1 = [�C , (s, a)] and weights F̃C+1 = [(1 − UC_)FC , UC IC+1]
8: Compress with budget nC = �U2

C : (&C+1, �C+1, FC+1) = KOMP(&̃C+1, �̃C+1, F̃C+1, nC )
9: end for
10: return &

The method in which we propose to bias actions is by selecting them according to the current estimate

of the optimal policy, i.e., the greedy policy. However, when doing so, the KQ-Learning updates (6.18)

computed using greedy samples (sC , aC , AC , s′C ) are composed of two points nearby in S × A space. These

points are then evaluated by kernels and given approximately equal in opposite weight. Thus, this update is

immediately pruned away during the execution of KOMP [120, 142, 122]. In order to make use of the greedy

samples and speed up convergence, we project the functional update onto just one kernel dictionary element,

resulting in the update step:

&̃C+1 = (1 − UC_)&C (·) + UC (^(sC , aC , ·)) IC+1 (6.27)
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The resulting procedure is summarized as Algorithm 7. First, trajectory samples are obtained using a greedy

policy. Then, the temporal-action difference is computed and averaged recursively. Finally, we update Q via

(6.27) and compress it using Algorithm 5.

d-Greedy Actions and Hybrid Update. To address the explore-exploit trade-off, we use an d-greedy policy

[143]: with probability d we select a random action, and select a greedy action with probability 1 − d. We

adopt this approach with d decreasing linearly during training, meaning that as time passes more greedy

actions are taken.

The algorithmwhen runwith a d-greedy policy is described as theHybrid algorithm, which usesAlgorithm

6 when exploratory actions are taken and Algorithm 7 for greedy actions. Practically, we find it useful to

judiciously use training examples, which may be done with a data buffer. Thus, the hybrid algorithm is

as follows: First, we accumulate trajectory samples in a buffer. Along with the (sC , aC , AC , s′C ) sample, we

store an indicator whether aC was an exploratory action or greedy with respect to &C−1. Then, samples are

drawn at random from the buffer for training. We explore two different methods for obtaining samples from

the buffer: uniformly at random, and prioritized sampling, which weighs each sample in the buffer by its

observed Bellman error. For greedy actions, we use the update in (6.27), and for exploratory actions, we use

the KQ-learning update from 6. Finally, we use KOMP to compress the representation of the & function.

Maximizing the & Function. In order to implement Algorithm 7, we must evaluate the instantaneous

maximizing action aC = argmaxa&C ((sC , a)). For a general reproducing kernel ^(·, ·), maximizing over a

weighted sum of kernels is a non-convex optimization problem, so we may get stuck in undesirable stationary

points. To reduce the chance that this undesirable outcome transpires, we use simulated annealing. First,

we sample actions a uniformly at random from the action space. Next, we use gradient ascent to refine our

estimate of the global maximum of & for state s. We use the Gaussian Radial Basis Function(RBF) kernel

(6.11), so the & function is differentiable with respect to an arbitrary action a:

(∇a&) (s, a) = &(s, a)
"∑
<=1

F<Σa (a − a<)) (6.28)

and that gradient evaluations are cheap: typically their complexity scales with the model order of the &

function which is a kept under control using Algorithm 5.

Remark 3 Observe that (6.27) bears a phantom resemblance to Watkins’ Q-Learning algorithm [105]; how-
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ever, it is unclear how to extend [105] to continuous MDPs where function approximation is required. In

practice, using (6.27) for all updates, we observe globally steady policy learning and convergence of Bellman

error, suggesting a link between (6.27) and stochastic fixed point methods [109, 110]. This link is left to future

investigation. For now, we simply note that stochastic fixed point iteration is fundamentally different than

stochastic descent methods which rely on the construction of supermartingales, so results from the previous

section do not apply to (6.27). Moreover, this update has also been referred to as a temporal difference

“semi-gradient" update in Chapters 9-10 of [101].

D Convergence Analysis

In this section, we shift focus to the task of establishing that the sequence of action-value function estimates

generated by Algorithm 6 yields a stationary solution to the Bellman optimality equation, which, given

intrinsic the non-convexity of the problem setting, is the best one may hope for in general through use of

numerical stochastic optimization methods. Our analysis extends the ideas of coupled supermartingales in

reproducing kernel Hilbert spaces [117], which have been used to establish convergent policy evaluation

approaches in infinite MDPs (a convex problem), to non-convex settings, and further generalizes the non-

convex vector-valued setting of [125].

Under the technical conditions stated to be subsequently stated, we derive a coupled stochastic descent-

type relationship for Algorithm 6 and then apply the Coupled Supermartingale Theorem [144][Lemma 6]

to establish convergence. Before proceeding, we introduce a few definitions which simplify derivations

greatly. In particular, for further reference, we use (6.13) to define a′C = argmaxa&C (s′C , a), the instantaneous

maximizer of the action-value function and defines the direction of the gradient. We also define the functional

stochastic quasi-gradient of the regularized objective

∇̂&� (&C , IC+1; sC , aC , s′C ) =
(
W^

(
(s′C , a′C ), ·

)
− ^ ((sC , aC ), ·)

)
IC+1 + _&C (6.29)

and its sparse-subspace projected variant as

∇̃&� (&C , IC+1; sC , aC , s′C ) =
(
&C − PH�C+1

[
&C − UC ∇̂&� (&C , IC+1; sC , aC , s′C )

] )
/UC (6.30)
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Note that the update may be rewritten as a stochastic projected quasi-gradient step rather than a stochastic

quasi-gradient step followed by a set projection, i.e.,

&C+1 = &C − UC ∇̃&� (&C , IC+1; sC , aC , s′C ) (6.31)

Further denote as the filtration FC as the time-dependent sigma-algebra containing the algorithm history

({&D , ID}CD=0 ∪ {sD , aD , s
′
D}C−1
D=0) ⊂ FC . With these definitions, we may state our main assumptions required to

establish convergence of Algorithm 6.

Assumption 1 The state space S ⊂ R? and action space A ⊂ R@ are compact, and the reproducing kernel

map may be bounded with probability 1 as

sup
s∈S ,a∈A

√
^((s, a), (s, a)) =  < ∞ (6.32)

Moreover, the subspaces HDC are intersected with some finite Hilbert norm ball for each C.

Assumption 2 The temporal action difference X and auxiliary sequence I satisfy the zero-mean, finite condi-

tional variance, and Lipschitz continuity conditions, respectively,

E[X | s, a] = X̄ , E[(X − X̄)2
�� s, a, s′] ≤ f2

X , E[I2 | s, a] ≤ �2
X for all & ∈ H (6.33)

where fX and � X are positive scalars, and X̄ = E{X | s, a} is the expected value of the temporal action

difference conditioned on the state s and action a. The expectation defining f2
X
is conditional on (s, a, s′).

These conditions hold with probability 1 for all s, a, s′.

Assumption 3 The functional gradient of the temporal difference is an unbiased estimate for ∇&� (&) and

the difference of the reproducing kernels expression has finite variance:

E
[
(W^ ((s′, a′), ·) − ^ ((s, a), ·))X̄

]
= ∇&� (&) (6.34)

E
{
‖W^ ((s′, a′), ·) − ^ ((s, a), ·) ‖2H

�� s, a, s′} ≤ �2
& (6.35)
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Moreover, the projected stochastic quasi-gradient of the objective has finite second moment

E
{
‖∇̃&� (&, I; s, a, s′)‖2H

�� s, a, s′} ≤ f2
& (6.36)

and the temporal action difference is Lipschitz continuous with respect to the action-value function Q.

Moreover, for any two distinct X̄D = E[XD | sD , aD] and X̄C = E[XC | sC , aC ], we have

‖X̄D − X̄C ‖ ≤ !& ‖&D −&C ‖H (6.37)

with &D , &C ∈ H distinct &-functions; !& > 0 is a scalar. The aforementioned conditions hold with

probability 1 for all s, a, s′.

Assumption 1 regarding the compactness of the state and action spaces of the MDP holds for most

application settings and limits the radius of the set from which the MDP trajectory is sampled. The mean

and variance properties of the temporal difference stated in Assumption 2 are necessary to bound the error in

the descent direction associated with the stochastic sub-sampling and are required to establish convergence of

stochastic methods. Regarding the last statement in Assumption 2, observe that IC is a recursive average of XC ,

which is comprised of bounded terms (finite-norm &-functions and a finite reward). Therefore, it naturally

holds that IC is an estimator whose sample path variance is finite. The finite variance of X is also reasonable

due to the fact that the reward and Q functions are bounded. Assumption 3 is similar to Assumption 2,

but instead of establishing bounds on the stochastic approximation error of the temporal difference, limits

stochastic error variance in the RKHS. The term related to the maximum of the & function in the temporal

action difference is Lipschitz in the infinity norm since & is automatically Lipschitz since it belongs to the

RKHS. Thus, this term can be related to the Hilbert norm through a constant factor. Hence, (6.37) is only

limits how non-smooth the reward function may be. These are natural extensions of the conditions needed for

vector-valued stochastic compositional gradient methods.

Due to Assumption 1 and the use of set projections in (6.23), we have that&C is always bounded in Hilbert

norm, i.e., there exists some 0 < � < ∞ such that

‖&C ‖H ≤ � for all C . (6.38)
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Under these conditions, we may establish a few key technical results which are precursors to our main

convergence results. In particular, we have the following proposition that characterizes the directional error

caused by projections. (6.38) may be explicitly enforced by thresholding the weight vectors FC to have norm

smaller than a large constant, and therefore this is a restriction on the range of the weight vectors output by

the algorithm, rather than an assumption on the problem class itself.

Proposition 1 Given independent identical realizations (sC , aC , s′C ) of the random triple (s, a, s′), the difference

between the projected stochastic functional quasi-gradient and the stochastic functional quasi-gradient of the

instantaneous cost is bounded for all C as

‖∇̃&� (&C , IC+1; sC , aC , s′C ) − ∇̂&� (&C , IC+1; sC aC , s′C )‖H ≤
nC

UC
(6.39)

Where UC > 0 denotes the step size and nC > 0 is the compression parameter of KOMP.

Proof 1 See Appendix F.

Lemma 1 Denote the filtration FC as the time-dependent sigma-algebra containing the algorithm history.

Let Assumptions 1-3 hold true and consider the sequence of iterates defined by Algorithm 6. Then:

1. The conditional expectation of the Hilbert-norm difference of action-value functions at the next and

current iteration satisfies the relationship

E
[
‖&C+1 −&C ‖2H | FC

]
≤ 2U2

C

(
�2
X�

2
& + _�

2
)
+ 2n2

C (6.40)

2. The auxiliary sequence IC with respect to the conditional expectation of the temporal action difference

X̄C (defined in Assumption 2) satisfies

E
[
(IC+1 − X̄C )2 | FC

]
≤ (1 − VC ) (IC − X̄C−1)2 +

!&

VC
‖&C −&C−1‖2H + 2V2

Cf
2
X (6.41)

3. Algorithm 6 generates a sequence of Q-functions that satisfy the stochastic descent property with respect
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to the Bellman error � (&) [cf. (6.12)]:

E
[
� (&C+1)

��FC ] ≤ � (&C ) − UC (1 − UC�2
&

VC

)
‖∇&� (&)‖2

+ VC
2
E

[
(X̄C − IC+1)2 | FC

]
+
!&f

2
&
U2
C

2
+ nC ‖∇&� (&C )‖H , (6.42)

Proof 2 See Appendix G.

With these technical results regarding the per-step behavior of Algorithm 6 established, we are ready to

present our main convergence results. We begin by discussing algorithm stability under attenuating step-size

rules.

Theorem 1 Consider the sequence IC and {&C } as stated in Algorithm 6. Assume the regularizer is positive

_ > 0, Assumptions 1-3 hold, and the step-size conditions hold, with � > 0 a positive constant:

∞∑
C=1

UC = ∞,
∞∑
C=1

VC = ∞,
∞∑
C=1

U2
C + V2

C +
U2
C

VC
< ∞, nC = �U2

C (6.43)

Then ‖∇&� (&)‖H converges to null with probability 1, and hence &C attains a stationary point of (6.12). In

particular, the limit of &C achieves the regularized Bellman fixed point restricted to the RKHS.

Proof: We use the relations established in Lemma 1 to construct a coupled supermatingale of the form 2. First,

we state the following lemma regarding coupled sequences of conditionally decreasing stochastic processes

called the coupled supermartingale lemma, stated as:

Lemma 2 (Coupled Supermartingale Theorem) [144]. Let {bC }, {ZC }, {DC }, {D̄C }, {[C }, {\C }, {nC }, {`C },

{aC } be sequences of nonnegative random variables such that

E{bC+1 | �C } ≤ (1 + [C )bC − DC + 2\C ZC + `C ,

E{ZC+1 | �C } ≤ (1 − \C )ZC − D̄C + nCbC + aC (6.44)

where �C = {bB , bB , DB , D̄B , [B , \B , nB , `B , aB}CB=0 is the filtration and 2 > 0 is a scalar. Suppose the following
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summability conditions hold almost surely:

∞∑
C=0

[C < ∞ ,

∞∑
C=0

nC < ∞ ,

∞∑
C=0

`C < ∞ ,

∞∑
C=0

aC < ∞ (6.45)

Then bC and ZC converge almost surely to two respective nonnegative random variables, and we may conclude

that almost surely
∞∑
C=0

DC < ∞ ,

∞∑
C=0

D̄C < ∞ ,

∞∑
C=0

\C ZC < ∞ (6.46)

We construct coupled supermartingales that match the form of Lemma 2 using Lemma 1. First, use

Lemma 1(2)(6.41) as an upper bound on Lemma 1(3) (6.42).

E[� (&C+1)
��FC ] ≤ � (&C ) − UC (1 − UC�2

&

VC
)‖∇&� (&C )‖2 +

VC

2
((1 − VC ) (IC − X̄C−1)2

+
!&

VC
‖&C −&C−1‖2H + 2V2

Cf
2
X) +

!&f
2
&
U2
C

2
+ nC ‖∇&� (&C )‖H (6.47)

We introduce three restrictions on the learning rate, expectation rate, and parsimony constant in order to

simplify (6.47). First, we assume that VC ∈ (0, 1) for all C. Next, we choose nC = U2
C . Lastly, we restrict

1 −
UC�

2
&

VC
> 0, which results in the condition: UC

VC
< 1
�2
&

. Then, we simplify and group terms of (6.47).

E
[
� (&C+1)

��FC ] ≤ � (&C ) − UC ‖∇&� (&C )‖2 + VC2 (IC − X̄C−1)2 (6.48)

+
!&

2
‖&C −&C−1‖2H + V3

Cf
2
X + U2

C

(
!&f

2
&

2
+ ‖∇&� (&C )‖H

)
Next, we aim to connect the result of (6.47) to the form of Lemma 2 via the identifications:

bC = � (&C ) , ZC = (IC − X̄C−1)2 , \C = VC , 2 = 1/2 , DC = UC ‖∇&� (&C )‖2 , [C = 0 (6.49)

`C =
!&

2
‖&C −&C−1‖2H + V3

Cf
2
X + U2

C

(
!&f

2
&

2
+ ‖∇&� (&C )‖H

)

Observe that
∑
`C < ∞ due to the upper bound on ‖&C − &C−1‖2H provided by Lemma 1(6.40) and the

summability conditions for U2
C and V2

C (6.43).
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Next, we identify terms in Lemma 1 (2) (6.41) according to Lemma 2 and (6.49).

aC =
!&

VC
‖&C −&C−1‖2H + 2V2

Cf
2
X , nC = 0 , D̄C = 0 (6.50)

The summability of aC can be shown as follows: the expression ‖&C − &C−1‖2H/VC which is order O(U2
C /VC )

in conditional expectation by Lemma 1(1). Sum the resulting conditional expectation for all C, which by the

summability of the sequence
∑
C U

2
C /VC < ∞ is finite. Therefore,

∑
C ‖&C − &C−1‖2H/VC < ∞ almost surely.

We also require
∑
C V

2
C < ∞ (6.43) for the summability of the second term of (6.50)

Together with the conditions on the step-size sequences UC and VC , the summability conditions of Lemma

2 are satisfied, which allows to conclude that bC = � (&C ) and ZC = (IC − X̄C−1)2 converge to two nonnegative

random variables w.p. 1, and that

∑
C

UC ‖∇&� (&C )‖2 < ∞,
∑
C

VC (IC − X̄C−1)2 < ∞ (6.51)

almost surely. Then, the summability of DC taken together with non-summability of UC and VC (6.43) indicates

that the limit infimum of the norm of the gradient of the cost goes to null.

lim inf
C→∞

‖∇&� (&C )‖ = 0 , lim inf
C→∞

(IC − X̄C−1)2 = 0 (6.52)

almost surely. From here, given lim infC→∞ ‖∇&� (&C )‖H = 0, we can apply almost the exact same argument

by contradiction as [125] to conclude that the whole sequence ‖∇&� (&C )‖H converges to null with probability

1, which is repeated here for completeness.

Consider some [ > 0 and observe that ‖∇&� (&C )‖H ≤ [ for infinitely many C. Else, there exists C0 such

that
∑∞
C=0 ‖UC∇&� (&C )‖2H ≥

∑∞
C=C0 UC[

2 = ∞ which contradicts (6.51). Therefore, there exists a closed set

H̄ ⊂ H such that {&C } visits H̄ infinitely often, and

‖∇&� (&)‖H


≤ [ for & ∈ H̄

> [ for & ∉ H̄, & ∈ {&C }
(6.53)

Suppose to the contrary that there exists a limit point &̃ such that ‖∇&� (&̃)‖H > 2[. Then there exists a
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closed set H̃, i.e., a union of neighborhoods of all &C ’s such that ‖∇&� (&C )‖H > 2[, with {&C } visiting H̃

infinitely often, and

‖∇&� (&)‖H


≥ 2[ for & ∈ H̃

< 2[ for & ∉ H̃, & ∈ {&C }
(6.54)

Using the continuity of ∇� and [ > 0, we have that H̄ and H̃ are disjoint: dist(H̄, H̃) > 0. Since {&C } enters

both H̄ and H̃ infinitely often, there exists a subsequence {&C }C ∈T = {{&C } 98−1
C=:8
} (with T ⊂ Z+) that enters H̄

and H̃ infinitely often, with &:8 ∈ H̄ and & 98 ∈ H̃ for all 8. Therefore, for all 8, we have

‖∇&� (&:8 )‖H ≥ 2[ > ‖∇&� (&C )‖H > [ ≥ ‖∇&� (& 98 )‖H for C = :8 + 1, . . . , 98 − 1

Therefore, we can write

∑
C ∈T
‖&C+1 −&C ‖H =

∞∑
8=1

98−1∑
C=:8

‖&C+1 −&C ‖H ≥
∞∑
8=1
‖&:8 −& 98 ‖H ≥ dist(H̄, H̃) = ∞ (6.55)

However, we may also write that

∞ >

∞∑
C=0

UC ‖∇� (&C )‖2H ≥
∑
C ∈T

UC ‖∇� (&C )‖2H > [2
∑
C ∈T

UC (6.56)

Then, since sets X and A are compact, there exist some " > 0 such that

‖&C+1 −&C ‖H ≤ UC ‖∇̃&� (&C , IC+1; sC , aC , s′C )‖H ≤ "UC (6.57)

for all C, using the fact that nC = U2
C . Therefore,

∑
C ∈T
‖&C+1 −&C ‖H ≤ "

∑
C ∈T

UC < ∞ (6.58)

which contradicts (6.55). Therefore, there does not exist any limit point &̃ such that ‖∇&� (&̃)‖H > 2[. By

making [ arbitrarily small, it means that there does not exist any limit point that is nonstationary. Moreover,

we note that the set of such sample paths occurs with probability 1, since the preceding analysis applies to all
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sample paths which satisfy (6.51). Thus, any limit point of &C is a stationary point of � (&) almost surely. �

Theorem 1 establishes that Algorithm 6 converges almost surely to a stationary solution of the problem

(6.12) defined by the Bellman optimality equation in a continuous MDP. This is one of the first Lyapunov

stability results for &-learning in continuous state-action spaces with nonlinear function parameterizations,

which are intrinsically necessary when the &-function does not admit a lookup table (matrix) representation,

and should form the foundation for value-function based reinforcement learning in continuous spaces. One

way to satisfy the step-size conditions in (6.43) is to set UC = C−0, VC = C−1 , and nC = C−20, with 3/4 < 0 < 1

and 1/2 < 1 < 20 − 1. This holds, for instance, if UC = C−5/6, VC = C−2/3, and nC = C−25/36. A key feature of

this result is that the complexity of the function parameterization will not grow untenably large due to the use

of our KOMP-based compression method which ties the sparsification bias nC to the algorithm step-size UC .

In particular, by modifying the above exact convergence result for diminishing step-sizes to one in which they

are kept constant, we are able to keep constant compression budgets as well, and establish convergence to a

neighborhood as well as the finiteness of the model order of &, as stated next.

Theorem 2 Consider the sequence IC and {&C } as stated in Algorithm 6. Assume the regularizer is positive

_ > 0, Assumptions 1-3 hold, and the step-sizes are chosen as constant such that 0 < U < V < 1, with

n = �U2 and the parsimony constant � > 0 is positive. Then the Bellman error converges to a neighborhood

in expectation, i.e.:

lim inf
C→∞

E[� (&C )] ≤ O ©« UV

V − U

1 +
√

1 + V − U
UV

(
1
V
+ V

2

U2

)ª®¬ (6.59)

Proof: Begin with the expression in (6.42), and substitute in constant step-size selections with n = �U2 and

(1 − V) ≤ 1, and compute the total expectation (FC = F0 ) to write

E[� (&C+1)] ≤ E[� (&C )] − U
(
1 −

U�2
&

V

)
E[‖∇&� (&)‖2]

+ �U2E[‖∇&� (&C )‖H] +
V

2
E[(IC+1 − X̄C )2] +

!&f
2
&
U2

2
, (6.60)

From here, note that sequence E[(IC+1 − X̄C )2] is identical (except re-written in terms of Q-functions rather

than value functions) to the sequence in Lemma 1(iii) of [117], and therefore, analogous reasoning to that
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which yields eqn. (86) in Appendix D of [117] allows us to write

E[(IC+1 − X̄C )2] ≤
2!&
V2

[
U2 (�2

X�
2
& + _

2�2
]
+ 2Vf2

X , (6.61)

which follows from applying (6.40) to the Hilbert-norm difference of &-functions term and recursively

substituting the total expectation of (6.41) back into itself, and simplifying the resulting geometric sum. Now,

we may substitute the right-hand side of (6.61) into the third term on the right-hand side of (6.60) to obtain

E[� (&C+1)] ≤ E[� (&C )] − U
(
1 −

U�2
&

V

)
E[‖∇&� (&)‖2] + �U2E[‖∇&� (&C )‖H]

+
2!&
V

[
U2 (�2

X�
2
& + _

2�2
]
+ 2V2f2

X +
!&f

2
&
U2

2︸                                                          ︷︷                                                          ︸
:= 

, (6.62)

In the preceding expression we have defined the constant factor  that depends on algorithm step-sizes U and

V. The rest of the proof proceeds as follows: we break the right-hand side of (6.62) into two subsequences, one

in which the expected norm of the cost functional’s gradient E[‖∇&� (&C )‖H] is below a specified threshold,

whereby � (&C ) is a decreasing sequence in expectation, and one where this condition is violated. We can use

this threshold condition to define a deterministically decreasing auxiliary sequence to which the Monotone

Convergence Theorem applies, and hence we obtain convergence of the auxiliary sequence. Consequently,

we obtain convergence in infimum of the expected value of � (&C ) to a neighborhood.

We proceed by defining the conditions under which E[� (&C )] is decreasing, i.e.,

E[� (&C+1)] ≤ E[� (&C )] − U
(
1 −

U�2
&

V

)
E[‖∇&� (&)‖2] + �U2E[‖∇&� (&C )‖H] +  

≤ E[� (&C )] (6.63)

Note that (6.63) holds whenever the following is true:

− U
(
1 −

U�2
&

V

)
E[‖∇&� (&)‖2] + �U2E[‖∇&� (&C )‖H] +  ≤ 0 (6.64)

Observe that the left-hand side of (6.64) defines a quadratic function of E[‖∇&� (&C )‖H] which opens
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downward. We can solve for the condition under which (6.64) holds with equality by obtaining the positive

root (since E[‖∇&� (&C )‖H] ≥ 0) of this expression through the quadratic formula:

E[‖∇&� (&)‖] =
(
� +

[
�2 + 4

(
1
U
−
�2
&

V

) [2!&
V

[
(�2

X�
2
& + _

2�2)
]
+

2V2f2
X

U2 +
!&f

2
&

2

] ]1/2) (
1
U
−
�2
&

V

)−1

= O ©« UV

V − U

1 +
√

1 + V − U
UV

(
1
V
+ V

2

U2

)ª®¬
where we have cancelled out a factor of U2 as well as common factors of −1. Now, define the right-hand side

of the previous expression as a constant Δ, and the auxiliary sequence

ΓC = E[� (&C )]1
{

min
D≤C
−U

(
1 −

U�2
&

V

)
E[‖∇&� (&)‖2] + �U2E[‖∇&� (&C )‖H] +  > Δ

}
where 1{�} denotes the indicator function of a (deterministic) event � . From here, we note that ΓC is

nonnegative since � (&C ) ≥ 0. Moreover, ΓC is decreasing: either the indicator is positive, in which case

its argument is true, and hence (6.64) holds with equality. When (6.64) holds with equality, the objective is

decreasing, namely, (6.63) is valid. Alternatively, condition inside the indicator is null, which, due to the use

of the minimum in the definition (D), means that the indicator is null for all subsequent times. Therefore,

in either case, ΓC is nonnegative and decreasing, and therefore we may apply the Monotone Convergence

Theorem [132] to conclude ΓC → 0. Therefore, we have either that limC E[� (&C )] −Δ = 0 or that the indicator

in (D) is null for C →∞. Taken together, these statements allow us to conclude

lim inf
C→∞

E[� (&C )] ≤ O ©« UV

V − U

1 +
√

1 + V − U
UV

(
1
V
+ V

2

U2

)ª®¬ (6.65)

which is as stated in (6.59). �

The expression on the right-hand side of (6.59) is a complicated posynomial of U and V, but is positive

provided V > U, and for a fixed V increases as U increases. This means that more aggressive selections of U,

for a given V, yield a larger limiting lower bound on the Bellman error. A simple example which satisfies the

constant step-size conditions 0 < U < V < 1 is V = U + ] for some small constant ] > 0. This is consistent

with the diminishing step-size conditions where UC/VC → 0 means that UC must be smaller than VC which is
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in (0, 1).

In subsequent sections, we investigate the empirical validity of the proposed approach on two autonomous

control tasks: the Inverted Pendulum and ContinuousMountain Car, for which observe consistent convergence

in practice. To do so, first some implementation details of Algorithm 6 must be addressed.

E Experiments

We shift to experimentation of the previously developed methods. We benchmark the proposed algorithms

on two classic control problems, the Continuous Mountain Car and the Inverted Pendulum, implemented by

OpenAI Gym [145].

For Continuous Mountain Car problem, the state space is ? = 2 dimensional, consisting of position and

velocity, bounded within [−1.2, 0.6] and [−0.07, 0.07], respectively. The action space is @ = 1 dimensional:

force on the car, within the interval [−1, 1]. The reward function is 100 when the car reaches the goal at

position 0.45, and −0.102 for any action 0. For each episode, the start position of the car is initialized

uniformly at random in [−0.6, 0.4].

In the Inverted Pendulum problem, the state space is ? = 3 dimensional, consisting of the sine of the angle

of the pendulum, the cosine of the angle, and the angular velocity, boundedwithin [−1.0, 1.0], [−1.0, 1.0], and

[−8.0, 8.0] respectively. The action space is @ = 1 dimensional: joint effort, within the interval [−2.0, 2.0].

The reward function is A (\, ¤\, 0) = −(\2 + 0.1 ¤\2 + 0.00102), where \ is the angle of the pendulum relative

to vertical, and ¤\ is the angular velocity. The goal of the problem is to balance the pendulum at the unstable

equilibrium where \ = 0.

For all experiments with the Continuous Mountain Car and the Inverted Pendulum problems, we used

Gaussian kernels with a fixed non-isotropic bandwidth. The relevant parameters are the step-sizes U and V,

the regularizer _, and the approximation error constant, �, where we fix the compression budget n = �U2.

These learning parameters were tuned through a grid search procedure, and are summarized in Table 6.1.

We investigate two methods for exploration as the agent traverses the environment. When using an

exploratory policy, actions are selected uniformly at random from the action space. When using an d-greedy

policy, we select actions randomly with probability 1, which linearly decays to 0.1 after 105 exploratory

training steps. In addition, we explore the use of a replay buffer. This method re-reveals past data to the agent
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uniformly at random. For the Mountain Car problem, we also use prioritized memory which replays samples

based on the magnitude of their temporal action difference.

A comprehensive summary of our experimental results may be found in Table 6.1. We bold which

methods perform best across many different experimental settings. Interestingly, playback buffers play a role

in improving policy learning in the Pendulum domain but not for Mountain Car, due to the difference in their

reward structure.

For completeness of comparison, we also consider two alternative ways to construct the kernel parame-

terization: one based on a compositional extension of the fixed-subspace stochastic gradient scheme in [128],

and another based on a direct discretization of the space into bins of a fixed size inversely proportional to the

number of bins raised to the power of the dimension of the space. Respectively denote these methods as “Bud-

geted" and “Discretized." For these comparators, we hand-tuned parameters to obtain the best performance,

which unsurprisingly were similar to those which worked well for KQ Learning in its various forms. We

further attempted to include a fixed linear basis expansion akin to [146] but were unable to obtain reasonable

performance. Overall, KQ Learning performs comparably to the “Budgeted" approach on Pendulum with a

smaller standard deviation, and better than the “Discretized" approach with 1000 bins on both environments

by a substantial margin.

In Figure 6.1, we spotlight the results of this experiment in the Continuous Mountain Car domain for

the Hybrid algorithm that is described in Appendix B. We plot the normalized Bellman test error Fig. 6.1b,

defined by the sample average approximation of (6.6) divided by the Hilbert norm of &C over a collection

of test trajectories, as well as the average rewards during training (Fig. 6.1a), and the model order, i.e., the

number of training examples in the kernel dictionary (Fig. 6.1c), all relative to the number of training samples

processed. Observe that the Bellman test error converges and the interval average rewards approach 90, which

is comparable to top entries on the OpenAI Leaderboard [145], such as Deep Deterministic Policy Gradient

[147] . Moreover, we obtain this result with a complexity reduction orders of magnitude relative to existing

methods for &-function and policy representation. This trend is corroborated for the Inverted Pendulum in

Figure 6.2: the normalized Bellman error converges and the model complexity remains moderate. Also, the

average rewards approach −200.

A feature of our method is the interpretability of the resulting & function, which we use to plot the value

function (6.3a) and policy (6.3b). One key metric is the coverage of the kernel points in the state-action space.
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Count Environment Algorithm Replay Buffer Policy Steps U V � Kernel Σ Order Training Loss Test Rewards
1 Inv. Pendulum KQ Yes Exploratory 100K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 29.53 1.28±5.66 -1427.30±188.86
2 Inv. Pendulum KQ Yes d-greedy 100K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 40.43 22.58±17.88 -1352.96±220.65
3 Inv. Pendulum Hybrid Yes d-greedy 500K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 193.01 7.56 ±25.74 -169.78 ±79.02
4 Inv. Pendulum Budgeted Yes d-greedy 500K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 200 6.91 ±24.63 -121.74 ± 81.97
5 Inv. Pendulum Discretized Yes d-greedy 500K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 2048 25.47 ±26.96 -1274.41 ± 218.93
6 Inv. Pendulum SG Yes d-greedy 200K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 201.75 4.17 ± 20.97 -150.36
7 Inv. Pendulum KQ No Exploratory 100K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 40.74 0.86±2.74 -1259.63±384.24
8 Inv. Pendulum KQ No d-greedy 100K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 79.72 19.11±18.49 -1497.66±84.72
9 Inv. Pendulum Hybrid No d-greedy 500K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 234.00 1.82 ±10.64 -115.01±78.57
10 Inv. Pendulum SG No d-greedy 200K 0.25 1.00 2.00 [0.5,0.5,2,0.5] 241.08 106.41 ±748.56 -403.89±76.98
11 Cont. M. Car KQ Prioritized Exploratory 100K 0.25 1.00 0.10 [0.8,0.07,1.0] 86.07 15.17±85.19 -10.58±1.57
12 Cont. M. Car KQ Prioritized d-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 97.0 2.04±7.54 93.09±3.03
13 Cont. M. Car Budgeted Prioritized d-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 100 3.28 ± 21.43 78.37 ± 35.71
14 Cont. M. Car Discretized Prioritized d-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 1000 200.72 ±427.13 75.86±40.40
15 Cont. M. Car Hybrid Prioritized d-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 80.0 1.33±4.33 93.71±2.53
16 Cont. M. Car SG Prioritized d-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 111.41 77.30±582.26 61.57±49.95
17 Cont. M. Car KQ No Exploratory 100K 0.25 1.00 0.10 [0.8,0.07,1.0] 57.55 0.13±3.58 -2.26±2.01
18 Cont. M. Car KQ No d-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 78.73 0.83±19.88 -29.70±0.58
19 Cont. M. Car Hybrid No d-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 84.97 0.38 ±3.18 90.18 ±26.74
20 Cont. M. Car SG No d-greedy 500K 0.25 1.00 0.10 [0.8,0.07,1.0] 81.04 0.80±7.98 95.07±1.13

Table 6.1: A summary of parameter selection details for our comparison of KQ-Learning(KQ), Hybrid,
and Semi-Gradient(SG) methods. In the right-most column, we display the model order and training loss
(Bellman error) over averaged over 1000 training steps with standard deviations. Moreover, we report the
accumulation of rewards during testing averaged over 20 episodes, again with standard deviations per episode
computed over this range. The best results for each problem setting are bolded for emphasis, which “solve" the
problem according to reward benchmarks set by OpenAI. We observe the replay buffer improves learning in
the Pendulum domain but yields little benefit in the Mountain Car problem. Overall, KQ Learning performs
comparably to the “Budgeted" approach on Pendulum with a lower standard deviation, and better than the
“Discretized" approach with 1000 bins on both environments by a substantial margin.

We can make conclusions about the importance of certain parts of the space for obtaining as much value as

possible by the density of the model points throughout the space, which may have importance in mechanical

or econometric applications.

F Proof of Proposition 1

Proof 3 Consider the RKHS norm difference of the projected and un-proejcted stochastic quasi-gradient

defined by (6.29) and (6.30)

‖∇̃&� (&C , IC+1; sC , aC , s′C ) − ∇̂&� (&C , IC+1; sC , aC , s′C )‖2H

= ‖(&C − PHDC+1
[&C − UC ∇̂&� (&C , IC+1; sC , aC , s′C )])/UC − ∇̂&� (&C , IC+1; sC , aC , s′C )‖2H
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Multiply and divide ∇̂&� (&C , IC+1; sC , aC , s′C ) by UC and reorder terms to write

‖
(&C − UC ∇̂&� (&C , IC+1; sC , aC , s′C ))

UC
−
(PHDC+1

[&C − UC ∇̂&� (&C , IC+1; sC , aC , s′C )])
UC

‖2H

=
1
U2
C

‖(&C − UC ∇̂&� (&C , IC+1; sC , aC , s′C )) − (PHDC+1
[&C − UC ∇̂&� (&C , IC+1; sC , aC , s′C )])‖2H

=
1
U2
C

‖&̃C+1 −&C+1‖2H ≤
n2
C

U2
C

where we have pulled the nonnegative scalar UC outside of the norm on the second line and substituted

the definition of &̃C+1 and &C+1. We also apply the KOMP residual stopping criterion from Algorithm 2,

‖&̃C+1 −&C+1‖ ≤ nC to yield (6.39).

G Proof of Lemma 1

Proof 4 Lemma 1(1) Consider the Hilbert-norm difference of action-value functions at the next and current

iteration and use the definition of &C+1

‖&C+1 −&C ‖2H = U2
C ‖∇̃&� (&C , IC+1; (sC , aC ), (s′C , a′C )‖2H (6.66)

We add and subtract the functional stochastic quasi-gradient ∇̂&� (&C , IC+1; (sC , aC ), (s′C , a′C ) from (6.66) and

apply the triangle inequality (0 + 1)2 ≤ 202 + 212 which holds for any 0, 1 > 0.

‖&C+1 −&C ‖2H ≤ 2U2
C ‖∇̂&� (&C , IC+1; (sC , aC ), (s′C , a′C )‖2H

+ 2U2
C ‖∇̂&� (&C , IC+1; (sC , aC ), (s′C , a′C ) − ∇̃&� (&C , IC+1; (sC , aC ), (s′C , a′C )‖2H (6.67)

Now, we may apply Proposition 1 to the second term. Doing so and computing the expectation conditional

on the filtration FC yields

E[‖&C+1 −&C ‖2H] | F] = 2U2
C E[‖∇̂&� (&C , IC+1; (sC , aC ), (s′C , a′C )‖2H | FC ] + 2n2

C
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Using the Cauchy-Schwarz inequality together with the Law of Total Expectation and the definition of the

functional stochastic quasi-gradient to upper estimate the first term on the right-hand side of (4) as

E[‖&C+1 −&C ‖2H | FC ]

≤ 2U2
C E{‖W^((s′C , a′C ), ·) − ^((sC , aC ), ·)‖2HE[I2

C+1 | sC , 0C ] | FC } + 2U2
C _‖&C ‖2H + 2n2

C (6.68)

Now, use the fact that IC+1 has a finite second conditional moment [cf. (6.33)], yielding

E[‖&C+1 −&C ‖2H | FC ] ≤ 2U2
C�

2
XE[‖W^((s′C , a′C ), ·) − ^((sC , aC ), ·)‖2H | FC ] + 2U2

C _‖&C ‖2H + 2n2
C

From here, we may use the fact that the functional gradient of the temporal action-difference W^((s′C , a′C ), ·) −

^((sC , aC ), ·) has a finite second conditional moment (6.35) and that the& function sequence is bounded (6.38)

to write:

E[‖&C+1 −&C ‖2H | FC ] ≤ 2U2
C (�2

X�
2
& + _

2�2) + 2n2
C (6.69)

which is as stated in Lemma 1(1).

Proof 5 Lemma 1(2) Begin by defining the scalar quantity 4C as the difference of mean temporal-action

differences scaled by the forgetting factor VC , i.e. 4C = (1 − VC ) (X̄C − X̄C−1). Then, we analyze the auxiliary

variable IC+1 with respect to the conditional mean temporal action difference X̄C , plus the difference of the

mean temporal differences:

IC+1 − X̄C + 4C =(1 − VC )IC + VCXC − [(1 − VC )X̄C + VC X̄C ] + (1 − VC ) (X̄C − X̄C−1) (6.70)

where we make use of the definition of IC+1, the fact that X̄C = {(1− VC )X̄C + VC X̄C } and the definition of 4C on the

right-hand side of (6.70). Observe that the result then simplifies to IC+1 − X̄C + 4C = (1− VC )IC + VC (X̄C − X̄C−1)

by grouping like terms and canceling the redundant X̄C . Squaring (6.70), using this simplification, yields

(IC+1 − X̄C + 4C )2 = (1 − VC )2 (IC − X̄C−1)2 + V2
C (XC − X̄C )2 + 2(1 − VC )VC (IC − X̄C−1) (XC − X̄C )
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Now, we compute the expectation conditioned on the algorithm history FC to write

E[(IC+1 − X̄C + 4C )2 | FC ] =(1 − VC )2 (IC − X̄C−1)2 + V2
C E[(XC − X̄C )2 | FC ]

+ 2(1 − VC )VC (IC − X̄C−1)E[(XC − X̄C ) | FC ] (6.71)

We apply the assumption that the temporal action difference XC is an unbiased estimator for its conditional

mean X̄C with finite variance (Assumption 2) to write

E[(IC+1 − X̄C + 4C )
��FC ] = (1 − VC )2 (IC − X̄C−1)2 + V2

Cf
2
X (6.72)

We obtain an upper estimate on the conditional mean square of IC+1 − X̄C by using the inequality ‖0 + 1‖2 ≤

(1 + d)‖0‖2 + (1 + 1d)‖1‖2 which holds for any d > 0: set 0 = IC+1 − X̄C + 4C , 1 = −4C , d = VC to write

(IC+1 − X̄C )2 ≤ (1 + VC ) (IC+1 − X̄C + 4C )2 +
(
1 + 1

VC

)
42
C (6.73)

Observe that (6.73) provides an upper-estimate of the square sub-optimality (IC+1− X̄C )2 in terms of the squared

error sequence (IC+1 − X̄C + 4C )2. Therefore, we compute the expectation of (6.73) and substitute (6.72) for

the terms involving the error sequence (IC+1 − X̄C + 4C )2, which results in gaining a factor of (1 + VC ) on the

right-hand side. Collecting terms yields

E[(IC+1 − X̄C )2 | FC ] = (1 + VC ) [(1 − VC )2 (IC − X̄C−1)2 + V2
Cf

2
X] +

(
1 + VC
VC

)
42
C

Using (1 − V2
C ) (1 − VC ) ≤ (1 − VC ) for the first term and (1 − VC )V2

C ≤ 2V2
C for the second:

E[(IC+1 − X̄C )2 | FC ] =(1 − VC ) (IC − X̄C−1)2 + 2V2
Cf

2
X +

(
1 + VC
VC

)
42
C (6.74)

We can bound the term involving 4C , which represents the difference of mean temporal differences. By

definition, we have |4C | = (1 − VC ) | (X̄C − X̄C−1) |:

(1 − VC ) | (X̄C − X̄C−1) | ≤ (1 − VC )!& ‖&C −&C−1‖H , (6.75)
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where we apply the Lipschitz continuity of the temporal difference with respect to the action-value function [cf.

(6.37)]. Substitute the right-hand side of (6.75) and simplify the expression in the last term as (1 − V2
C )/VC ≤

1/VC to conclude (6.42).

Proof 6 Lemma 1(3) Following the proof of Theorem 4 of [125], consider the Taylor expansion of � (&) and

applying the fact that it has Lipschitz continuous functional gradients to upper-bound the second-order terms.

Doing so yields the quadratic upper bound:

� (&C+1) ≤ � (&C ) + 〈∇� (&C ), &C+1 −&C 〉H +
!&

2
‖&C+1 −&C ‖2H . (6.76)

Substitute the fact that the difference between consecutive action-value functions is the projected quasi-

stochastic gradient &C+1 −&C = −UC ∇̃&� (&C , IC+1; sC , aC , s′C ) (6.31) into (6.76) .

� (&C+1) ≤ � (&C ) − UC 〈∇� (&C ), ∇̃&� (&C , IC+1; sC , aC , s′C )〉H +
!&U

2
C

2
‖∇̃&� (&C , IC+1; sC , aC , s′C )‖2H .

Subsequently, we use the short-hand notation

∇̂&� (&C ) := ∇̂&� (&C , IC+1; sC , aC , s′C )

∇̃&� (&C ) := ∇̃&� (&C , IC+1; sC , aC , s′C )

for the stochastic and projected stochastic quasi-gradients, (6.29) and (6.30), respectively. Now add and

subtract the inner-product of the functional gradient of � with the stochastic gradient, scaled by the step-size

UC 〈∇� (&C ), ∇̂&� (&C , IC+1; sC , aC , s′C )〉H, and UC ‖∇&� (&C )‖2 into above expression and gather terms.

� (&C+1) ≤ � (&C ) − UC ‖∇&� (&)‖2 +
!&U

2
C

2
‖∇̃&� (&C )‖2H (6.77)

− UC 〈∇� (&C ), ∇̃&� (&C ) − ∇̂&� (&C )〉H + UC 〈∇� (&C ),∇� (&C ) − ∇̂&� (&C )〉H

The last two terms on the right-hand side of (6.77) are terms associated with the directional error between

the true gradient and the stochastic quasi-gradient, as well as the stochastic quasi-gradient with respect to the

projected stochastic quasi-gradient. The former term may be addressed through the KOMP stopping criterion

in Proposition 1, whereas the later may be analyzed through the Law of Total Expectation and Assumptions

109



2 - 3.

We proceed to address the second term on the right-hand side of (6.77) by applying Cauchy-Schwarz to

write

| − UC 〈∇� (&C ), ∇̃&� (&C ) − ∇̂&� (&C )〉H | ≤ UC ‖∇� (&C )‖H‖∇̃&� (&C ) − ∇̂&� (&C )‖H (6.78)

Now, apply Proposition 1 to ‖∇̃&� (&C ) − ∇̂&� (&C )‖H, the Hilbert-norm error induced by sparse projections

on the right-hand side of (6.78) and cancel the factor of UC :

UC 〈∇� (&C ), ∇̃&� (&C ) − ∇̂&� (&C )〉H ≤ nC ‖∇� (&C )‖H (6.79)

Next, we address the last term on the right-hand side of (6.77). To do so, we will exploit Assumptions 2 -

3 and the Law of Total Expectation. First, consider the expectation of this term, ignoring the multiplicative

step-size factor, while applying (6.34):

E
[
∇� (&C ),∇&� (&C ) − ∇̂&� (&C )〉H

��FC ]
=

〈
∇&� (&C ),E[(W^((s′C , a′C ), ·) − ^((sC , aC ), ·)) (X̄C − IC+1)

��FC ]〉
H

(6.80)

In (6.80), we pull the expectation inside the inner-product, using the fact that ∇&� (&) is deterministic. Note

on the right-hand side of (6.80), by using (6.34), we have X̄C inside the expectation in the above expression

rather than a realization XC . Now, apply Cauchy-Schwartz to the above expression to obtain

〈
∇&� (&C ),E[(W^((s′C , a′C ), ·) − ^((sC , aC ), ·)) (X̄C − IC+1)

��FC ]〉
H

≤ ‖∇&� (&C )‖HE[‖(W^((s′C , a′C ), ·) − ^((sC , aC ), ·))‖H × |X̄C − IC+1 |
��FC ] (6.81)

From here, apply the inequality 01 ≤ d

2 0
2 + 1

2d 1
2 for d > 0 with

0 = |X̄C − IC+1 |, 1 = UC ‖∇&� (&C )‖‖W^((s′C , a′C ), ·) − ^((sC , aC ), ·)‖H, (6.82)
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and d = VC to the preceding expression:

‖∇&� (&C )‖HE[‖(W^((s′C , a′C ), ·) − ^((sC , aC ), ·))‖H |X̄C − IC+1 |
��FC ]〉

H

≤ VC

2
E[(X̄C − IC+1)2 | FC ] +

U2
C

2VC
‖∇� (&C )‖2HE[‖W^((s′C , a′C ), ·) − ^((sC , aC ), ·)‖2H

��FC ] (6.83)

To (6.83), we apply Assumption 3 regarding the finite second conditional of the difference of reproducing kernel

maps (6.35) to the second term (together with the Law of Total Expectations and the fact that {sC , aC , s′C } ⊂ FC ).

When substituted into the right-hand side of the expectation of (6.77) conditional on FC , we obtain

E[� (&C+1)
��FC ] ≤ � (&C ) − UC (1 − UC�2

&

VC

)
‖∇&� (&)‖2 +

VC

2
E[(X̄C − IC+1)2 | FC ]

+
!&f

2
&
U2
C

2
+ nC ‖∇&� (&C )‖H , (6.84)

where we have also applied the fact that the projected stochastic quasi-gradient has finite conditional variance

(6.36) and gathered like terms to conclude (6.42).

Lemma 1 is may be seen as a nonparametric extension of Lemma 2 and A.1 of [125], or an extension

of Lemma 6 in [117] to the non-convex case. Now, we may use Lemma 1 to connect the function sequence

generated byAlgorithm 6 to a special type of stochastic process called a coupled supermartingale, and therefore

prove that &C converges to a stationary point of the Bellman error with probability 1. To our knowledge, this

result is unique.

H Summary

We extended the nonparametric optimization approaches in [117] from policy evaluation to policy learning

in continuous Markov Decision Problems. We reformulate policy learning defined by the Bellman optimality

equation as a non-convex function-valued stochastic program with nested expectations. We hypothesize

that the Bellman fixed point belongs to a reproducing Kernel Hilbert Space, motivated by the efficient semi-

parametric form. By applying functional stochastic quasi-gradient method with greedily constructed subspace

projections, we derived a new efficient variant of & learning which is guaranteed to converge almost surely in

continuous spaces, one of the first results of this type.
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Unlike in the policy evaluation setting, in policy learning, we are forced to confront fundamental limitations

associated with non-convexity and the explore-exploit tradeoff. We adopt a hybrid policy learning situation

in which some actions are chosen greedily and some are chosen randomly. Through tuning of the proportion

of actions that are greedy versus exploratory, we are able to design a variant of & learning which learns good

policies on some benchmark tasks, namely, the Continuous Mountain Car and the Inverted Pendulum, with

orders of magnitude fewer training examples than existing approaches based on deep learning. Further, owing

to the kernel parameterization of our learned & functions, they are directly interpretable: the training points

which are most vital for representing the minimal Bellman error action-value function are retained and define

its feature representation.
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Figure 6.1. Results of 10 experiments over 500, 000 training steps were averaged (black curve) to demonstrate the learning
progress forContinuousMountain Car using the Hybrid algorithm with no replay buffer, Row 15 in Table 6.1. Fig. 6.1a
shows the average reward obtained by the d-greedy policy during training. An average reward over 90 (green) indicates
that we have solved ContinuousMountain Car, steering towards the goal location. Fig. 6.1b shows the normalized Bellman
error during training, which converges to a small non-zero value. Fig. 6.1c shows the number of points parameterizing
the kernel dictionary of & during training, which remains under 80 on average. Overall, we solve Continuous Mountain
Car with a complexity reduction by orders of magnitude relative to existing methods [2, 3].
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Figure 6.2. Results of 10 experiments over 500, 000 training steps were averaged (black curve) to demonstrate the learning
progress for the effective, convergent, and parsimonious solution for the Pendulum domain using the Hybrid algorithm
with a replay buffer, Row 3 in Table 6.1. Fig. 6.2a shows the average reward obtained by the d-greedy policy during
training. Fig. 6.2b shows the Bellman error for training samples (6.6) normalized by the Hilbert norm of &, which
converges to a small non-zero value. Fig. 6.2c shows the number of points parameterizing the kernel dictionary of &
during training, which remains under 700 on average. Overall, we solve Pendulum with a model complexity reduction by
orders of magnitude relative to existing methods [2, 3], with a much smaller standard deviation around the average reward
accumulation, meaning that these results are replicable.
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Figure 6.3. For the Continuous Mountain Car problem, the learned&-function is easily interpretable: we may visualize
the value function, + (B) = max0 &(B, 0) (6.3a) and corresponding policy c(B) = argmax0 &(B, 0) (6.3b). In Fig. 6.3a,
the color indicates the value of the state, which is highest (dark red) near the goal 0.6. At this position, for any velocity,
the agent receives an award of 100 and concludes the episode. In Fig. 6.3b, the color indicates the force on the car
(action), for a given position and velocity (state). The learned policy takes advantage of the structure of the environment
to accelerate the car without excess force inputs. The dictionary points are pictured in white and provide coverage of the
state-action space.
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Chapter 7

Composable Learning with Sparse Kernel Repre-

sentations

A key goal in the design of distributed robot teams is the ability to learn collaboratively, so that knowledge

and experience gained by one system can be seamlessly incorporated in another. Parallel experiences have

already been used to stabilize and hasten joint learning [148], but we argue that there is also a need for learning

techniques designed for loosely-coupled teams, in which members may be disconnected for long periods of

time and then briefly reconnect to share information and coordinate. We re-consider joint learning problems

where coordination is now an infrequent event and not part of the update cycle.

This problem requires composable learning, the capability for models learned by different systems to

be directly composed as a single model that combines the strengths of each component. We need model

representations that can be joined without additional training, which is a major challenge for modern data-

driven (deep) machine learning. Different agents with different experiences will invariably develop different

representations that cannot be directly combined. Though the agents may use the same deep neural network

architecture, each structurally-equivalent weight will be specialized for different purposes.

To capture this notion of composability, we choose instead to use models that live in a Reproducing Kernel

Hilbert Space (RKHS), a classic non-parametric learning approach, in which a learned model is represented

directly over its training data [149]. Because the domain of the learned model’s applicability is directly

represented by its support, we can imagine how models that were developed over separate regions of the data
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Figure 7.1. Four policies are trained on individual environments and each represented with their own kernel support
and then composed into a single policy with broader support that applies everywhere. These four training environments
(referred to as Maze, Circuit 1, Circuit 2, and Round) were used in simulation as part of the demonstration of our approach
to composable learning.
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space can combine their supports into one broader model. Recent work on online learning of sparse kernel

functions [122] gives us tools for building larger kernel functions while minimizing the number of basis points

required in the support.

We apply this model composition approach to the scenario of robots learning to avoid obstacles by

experiencing collisions, a well-studied problem that has been successfully solved on physical platforms using

methods that blend reinforcement learning with foundational techniques in optimal control [150] or supervised

learning [151]. Because our primary interest is understanding the composability of obstacle-avoiding policies,

we opt to learn our policies using Q-learning as a stand-in for more sophisticated approaches, based on recent

work in Q-learning with sparse kernel representations [152]. To enable learning control policies in the

continuous action space of our problem, we propose a kernelized version of the Normalized Advantage

Function Q-learning algorithm [153].

In the context of Q-learning, the density of kernel support of the converged policy is a reflection of the

states where we can expect that policy to be near optimal, since these states are drawn from the stationary

distribution of the Bellman optimality operator. We suggest the use of the density of the support to decide

which component policy should be chosen to dominate in a composition of policies in a region of the state

space. We can represent this density directly in the RKHS as an application of the Kernel Mean Embedding

[154], but with the addition of our sparsity-inducing procedures.

The main contributions of this work are: 1) An algorithm for composing multiple RKHS functions

according to their density of kernel support; 2)AKernelNormalizedAdvantage FunctionQ-learning algorithm

that extends [153] to learn policies represented in an RKHS; 3) A proof-of-concept demonstration in which

we: (a) train obstacle-avoidance policies in multiple simulations of a robot equipped with a laser scanner and

navigating in a 2D environment; (b) apply composition to various policy combinations and test them to show

that the composed policies retain the performance of their components; and (c) transfer the composed policy

directly to a physical platform operating in an arena with obstacles in order to elicit a sense of generalization.

This chapter has been published as [155]. An open-source implementation of our work can be found at

https://github.com/katetolstaya/kernelrl. A video demonstration is available at https:

//youtu.be/kWIigy5MWdU.
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A Normalized Advantage Functions in RKHS

We model an autonomous agent in a continuous space as a Markov Decision Process (MDP) with continuous

states s ∈ S ⊆ R? and actions a ∈ A ⊆ R@ . When in state s and taking action a, a random transition to state

s′ occurs according to the conditional probability density P(s′ |s, a). After the agent to a particular s′ from s,

the MDP assigns an instantaneous reward A (s, a, s′), where the reward function is a map A : S ×A × S → R.

In Markov Decision problems[98], the goal is to find the action sequence {aC }∞C=0 so as to maximize

the infinite horizon accumulation of rewards, i.e., the value: + (s, {aC }∞C=0) := Es′ [
∑∞
C=0 W

CA (sC , aC , s′C ) | s0 =

s, {aC }∞C=0] [129]. The action-value function &(s, a) is the conditional mean of the value function given the

initial action a0 = a:

&
(
s, a, {aC }∞C=1

)
:= Es′

[ ∞∑
C=0

WCA (sC , aC , s′C ) | s0 = s, a0 = a, {aC }∞C=1

]
We consider the case where actions aC are chosen according to a stationary stochastic policy, where a policy

is a mapping from states to actions: c: S → A. We define &∗ (s, a) as the maximum of (A) with respect to

the action sequence.

It is possible to formulate finding the optimal action-value function as a fixed point problem [156]: shift

the index of the summand in (A) by one, make use of the time invariance of the Markov transition kernel, and

the homogeneity of the summand, to derive the Bellman optimality equation :

&∗ (s, a) = Es′

[
A (s, a, s′) + Wmax

a′
&(s′, a′)

]
(7.1)

The reason for defining action-value functions is that the optimal &∗ may be used to compute the optimal

policy c∗ as

c∗ (s) = argmax
a

&∗ (s, a) . (7.2)

Computation of the optimal policy for continuous action problems requires maximizing the & function

(7.2) which may not have a closed form, and can be challenging. To mitigate this issue, we hypothesize that
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& has a special form: it is a sum of the value and an advantage [157]:

&(s, a) = + (s) + �(s, a) (7.3)

According to the definition of the action-value function, we require that maxa&(s, a) = + (s). Therefore,

the optimal action has no advantage: maxa �
∗ (s, a) = 0.

For this hypothesis to yield computational savings, we parametrize the advantage function as a quadratic

function [153]. We define ! (s) : S → A × A as a matrix function, so !) (s)! (s) is positive definite. The

policy is a bounded vector function c : S → A.

�(s, a) = −1
2
(a − c(s)) !) (s)! (s) (a − c(s)) (7.4)

Thus, we assume the advantage function is quadratic in the actions, which is restrictive, albeit sufficient, for

the applications we examine.

To find the optimal policy, we seek to satisfy (7.1) for all state-action pairs, yielding the cost functional

�̃ (&):

�̃ (+, c, !) = Es,a (H(s, a) −&(s, a))2 , (7.5)

where H(s, a) = Es′ [A (s, a, s′) + W+ (s′)]. Substituting (7.3), finding the Bellman fixed point reduces to the

stochastic program:

+∗, !∗, c∗ = argmin
+ ,c,!∈B (S)

�̃ (+, c, !) . (7.6)

Since searching over value functions that are arbitrary bounded continuous functions B(S) is untenable, we

restrict B(S) to be a reproducing Kernel Hilbert space (RKHS) H to which + (s) belongs [129]. Further, the

quadratic parameterization of the advantage function means that c and ! also belong toH. An RKHS over S

is a Hilbert space is equipped with a reproducing kernel, an inner product-like map ^ : S ×S → R [133, 134]:

(i) 〈c, ^(s, ·)〉H = c(s), (ii) H = span{^(s, ·)} (7.7)
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In this work, we restrict the kernel used to be in the family of universal kernels, such as a Gaussian kernel

with constant diagonal covariance Σ, i.e.,

^(s, s′) = exp
{
−1

2
(s − s′) Σ (s − s′))

}
(7.8)

motivated by the fact that a continuous function over a compact set may be approximated uniformly by a

function in a RKHS equipped with a universal kernel [136].

To apply the Representer Theorem, we require the cost to be coercive in + , c and ! [134], which

may be satisfied through use of a Hilbert-norm regularizer, so we define the regularized cost functional

� (+, c, !) = �̃ (+, c, !) + (_/2) (‖+ ‖2H + ‖c‖2H + ‖!‖2H) and solve the regularized problem.

+∗, c∗, !∗ = argmin
+ ,c,!∈H

� (+, c, !) (7.9)

= argmin
+ ,c,!∈H

�̃ (+, c, !) + _
2

(
‖+ ‖2H + ‖c‖2H + ‖!‖2H

)
.

We point out that this is a step back from the original intent of solving (7.6) because the assumption we have

made about +∗, c∗, and !∗ being representable in the RKHS H need not be true. More importantly, the

functional � (+, c, !) is not convex in+ , c, and ! and there is no guarantee that a local minimum of � (+, c, !)

will be the optimal policy c∗. This is a significant difference relative to policy evaluation problems [117]. In

the next section, we describe a method for solving (7.9) in parallel and then composing sparse solutions.

B Composable Learning in RKHS

To enable efficient learning in diverse environments in parallel, we require a composable representation of the

control policy c(s), which is obtained through a sparse kernel parametrization. First, we develop an algorithm

for learning these policy representations using a sequence of observations from a single environment.

Q-Learning with Kernel Normalized Advantage Functions. To solve (7.9), we follow the semi-gradient

TD approach described by [101], which uses the directional derivative of the loss along the direction where

ĤC (s, a) is fixed and independent of&C . To obtain the semi-gradient at the sample (sC , aC , AC , s′C ), we define the

fixed target value HC (sC , aC , AC , s′C ) = AC + W+C (s′C ) and the temporal difference as XC = HC −&C (sC , aC ). Then, we
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apply the chain rule to the resulting functional stochastic directional derivative, together with the reproducing

property of the RKHS (7.7) to obtain the stochastic functional semi-gradients of the loss � (+, c, !) as

∇̂+ � (+, c, !) = −XC ^(sC ) (7.10)

∇̂c� (+, c, !) = −! (sC )! (sC )) (aC − cC (sC )) XC ^(sC )

∇̂!� (+, c, !) = ! (sC )) (aC − cC (sC )) (aC − cC (sC ))) XC ^(sC )

As a result, +, c, ! ∈ H are expansions of kernel evaluations only at past observed states and the optimal + ,

c and ! functions in the Reproducing Kernel Hilbert Space (RKHS) take the following form

+ (s) =
#∑
==1

F+ =^(s=, s), c(s) =
#∑
==1

wc=^(s=, s), !(s) =
#∑
==1

w!=^(s=, s) (7.11)

We propose the Kernel Normalized Advantage Functions (KNAF) variant of Q-Learning to iteratively

learn the action-value function while following trajectories with a stochastic policy. This algorithm includes

the approximation of a kernel density metric d(s), which is later used to compose multiple learned models

(7.13). The + , c, ! and d function representations are compressed with Kernel Orthogonal Matching Pursuit

(KOMP), where we tie the compression to the learning rate to preserve tractability and convergence of the

learning process [120, 122].

Alg. 8 produces locally optimal policy representations of low complexity, sparsified using KOMP. These

parsimonious representations reduce the complexity of real-time policy evaluation and enable the efficient

policy composition procedure described in the next section.

Model Composition. The key novelty of our approach is the ability to compose multiple control policies

without additional training samples. We summarize a procedure for projecting # policies trained in parallel

on different environments using Algorithm 8 c8 (s) =
∑
9 F8 9^(s, s8 9 ),for 8 = 1, . . . , # , to a single function

Π(s) = ∑
9 F 9^(s, s 9 ).

We seek an interpolation between multiple candidate policies, which preserves the values of the original

functions. A simple linear combination or sum is insufficient because we want to set Π(s) = c8 (s) for all s in

the kernel dictionaries of the candidate policies. To project multiple functions c8 into one RKHS, we iterate
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Algorithm 8 Q-Learning with Kernel Normalized Advantage Functions (KNAF)
Require: ;0, {UC , VC , ZC , nC ,ΣC }C=0,1,2...
+0 (·) = 0, c0 (·) = 0, !0 (·) = ;0�, d0 (·) = 0
for C = 0, 1, 2, . . . do
Obtain trajectory realization (sC , aC , AC , s′C ) using a stochastic policy cC (sC ) ∼ N (cC (sC ),ΣC )
Compute the target value and Bellman error

ĤC (sC , aC , AC , s′C ) = AC + W+C (s′C ), XC = ĤC −&C (sC , aC )

Compute the stochastic estimates of the gradients of � with respect to + , c and !

∇̂+ � (&C ) = −XC ^(sC )

∇̂c� (&C ) = −! (sC )! (sC )) (aC − cC (sC ))XC ^(sC )

∇̂!� (&C ) = ! (sC )) (aC − cC (sC )) (aC − cC (sC ))) XC ^(sC )

Update + , c, !, d:

+C+1 = +C (·) − UC ∇̂+ � (&C ), cC+1 = cC (·) − VC ∇̂c� (&C ),

!C+1 = !C (·) − ZC ∇̂!� (&C ) , dC+1 = dC (·) + ^(sC )

Obtain greedy compression of +C+1, cC+1, !C+1, dC+1 via KOMP with budget nC
end for
return + ,c,!
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through all dictionary points and perform the following update on Π(·) at s8 9 given c8 (s8 9 ):

Π(·) = Π(·) +
(
c8 (s8 9 ) − Π(s8 9 )

)
^(s8 9 , ·) (7.12)

The next challenge we address is resolving local conflicts among c8 . We score the reliability of the c8 in the

neighborhood of s by the number of gradient steps performed in that neighborhood during training, which

is the same as the number of observations at that state in Alg. 8. We cannot directly use the density of

kernel dictionary elements because the pruning step of Alg. 8 limits the density of the representation via

compression with budget nC . To accurately represent the number of observations in a neighborhood of the

state space, we propose to augment the approximation of + , c and ! with a fourth function, d, which is the

kernel mean embedding of the observed states, representing the probability distribution of states observed

during training [158]. To incorporate this approach into Algorithm 8, we augment Step 6 of Algorithm 8 with

a density estimation step:

dC+1 = dC (·) + ^(sC , ·) (7.13)

When d is repeatedly pruned along with+ , c, and !, the removed weights are projected onto nearby dictionary

elements, producing non-unity weights for each dictionary element. This results in a sparse representation

of the kernel mean embedding, accurate to n over the entire state-space. This approach is inspired by kernel

density estimation [154].

In Algorithm 9, we first accumulate dictionary points from all candidate policies into one matrix � and

initialize the composite policy to zero, Π(·) = 0. Then, we choose points s8 9 from � uniformly without

replacement and compare the kernel density at s8 9 of c8 , the function of origin for that observation, against

the density at s8 9 of c: for : ≠ 8, the other candidate functions. If the density of c8 is greater, we add that

point to the composite result because it is deemed most reliable in the neighborhood of s8 9 in the state space.

For our application, we are able to estimate d indirectly by the density of dictionary points of a policy c

around state s:

d̃(c, s) =
∑
s: ∈c

^(s, s: ) (7.14)

This simplification can be used because the structure of the reward function induces an a approximation of a

kernel mean embedding on the kernel dictionary of c itself. This does not hold for all problems. For example,
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Algorithm 9 Composition with Conflict Resolution
Input: {c8 (s) =

∑"8
9
F8 9^(s, s8 9 ), d8 (s) =

∑"8
9
E8 9^(s, s8 9 )}8=1,2...,# , n

1: Initialize Π(·) = 0, append centers � = [s11, . . . , s8 9 , . . .]
2: for each s8 9 ∈ � chosen uniformly at random do
3: if d8 (s8 9 ) > max:≠8 d: (s8 9 ) then
4:

Π = Π(·) +
(
c8 (s8 9 ) − Π(s8 9 )

)
^(s8 9 , ·)

5: end if
6: end for
7: Obtain compression of c using KOMP with n
8: return 5

if the optimal value, policy, and L functions are all zero in a region of the state space, then all kernel points

in the region will be pruned away and the density of the dictionary will not accurately represent the reliability

of the function.

C Simulated & Experimental Evaluations

We apply the KNAF algorithm to the robotic obstacle avoidance task by training on a variety of environments

in simulation, and then validating the learned policies on a physical robot.

Simulation Results Building on the infrastructure designed by [159], we train our algorithm on a wheeled

robot traveling through indoor environments. The robot receives laser scans at a rate of 10 Hz, with 5 range

readings at at an angular interval of 34◦ with a field of view of 170◦. The robot controls its angular velocity

between [−0.3, 0.3] rad/s at a rate of 10Hz while traveling with a constant forward velocity 0.15 m/s. While

traveling through the environment, the robot receives a reward of −200 for colliding with obstacles and a

reward of +1 otherwise. The four training environments pictured in Fig. 7.1 are Maze, Circuit 1, Circuit 2

and Round, which mimic the appearance of indoor spaces. The Round environment is simplest of the four

environments because of its radial symmetry. The Circuit 2 environment incorporates narrow hallways that

turn both left and right. The Circuit 1 environment adds multiple tight turns in quick succession. The Maze

environment incorporates all of these features in a more complex environment.

Individual environment training. We demonstrate the typical learning progress of Algorithm 8 by re-

producing ten trials of training with the Round environment, and plot training rewards, model order, and
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Bellman error in Fig. 7.2. The learning progress is extremely reproducible, with average episode rewards

of at least 2000 after 100,000 training steps. By the end of training, the robot travels for at least 2000 steps

before crashing during every episode. Training Bellman error reliably converges for every trial. The resulting

policies are parsimonious, with a limiting model order of fewer than 250 kernel dictionary elements. Next, we

demonstrate the performance of Alg 8 on the four environments pictured in Fig. 7.1 in Table 7.1. All policies

achieve zero crashes during testing. We also observe that the Maze environment required many more training

steps and achieved a larger model order. We interpret this to mean that the Maze environment is more varied,

and therefore requires a higher coverage of the state space.

Generalization across environments. We analyze the inability of a single policy to generalize to other

environments in Table 7.2. We observe that policies trained on the Round environment (Policy 1) could not

generalize to other environments at all, with an average test reward of −4226. We observe that all policies

were able to successfully navigate the Round environment with no crashes, most likely due to its simplicity.

The policy trained on the Maze environment (Policy 2) was able to somewhat generalize to the other three

environments, while none of the other environments could generalize to the Maze, due to its complexity.

Policies trained on Circuit 1 (Policy 4) and Circuit 2 (Policy 3) completely failed on the Maze environment,

but were able to transfer somewhat among each other, and to the Round environment.

Dual compositions. We apply the composition algorithm (Alg. 9) to combine two of the four trained policies

to observe performance on the original two environments and analyze generalization performance on the

remaining environments in Fig. 7.2. All controllers composed from Policy 2 (trained on Maze) achieved

perfect reward of 1000 on the difficult Maze environment. Policies composed from Circuit 1 and Circuit

2 were able to achieve positive average rewards on the Circuit 1 and 2 environments. We observe some

generalization capabilities in the results for the composite Policy 1/2 (Round and Maze), which performs

better in all four test environments than both of the original policies. The other dual composite policies were

not able to generalize better than the individual policies.

Composition of multiple policies. We further validate the composition algorithm (Alg. 9) using every

combination of four trained policies: an additional eleven policies composed from two, three, and four of

the original four policies. The performance of the composite policies was validated on the four training

environments in Fig. 7.2. Nearly optimal performance was observed when all four policies (1/2/3/4) were

composed into one, and then tested on all of the four environments. Two collisions were observed in the
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Environment Steps Model Order Loss Rewards
Round 230K 224 2.24 1000
Maze 630K 779 16.04 1000
Circuit 2 280K 467 36.40 1000
Circuit 1 500K 578 47.97 1000

Table 7.1: Limiting model complexity, training loss (Bellman error), and accumulation of rewards over 1,000
testing steps for each of the four environments. All environments are solved by the K-NAF algorithm within
700,000 simulation steps.

Circuit 1 environment, and none in the other three when testing for 1,000 time steps in each environment.

Robot Results. The real-world validation experiments were carried out on a Scarab robot pictured in Fig.

7.3, equipped with an on-board computer, wireless communication, and a Hokuyo URG laser range finder. It

is actuated by stepper motors and its physical dimensions are 30 x 28 x 20 cm with a mass of 8kg [160]. Laser

scans were received at a rate of 10Hz and 5 range readings were obtained as in simulation. Angular velocity

commands were issued at 10Hz. The test environment was built using laboratory furniture and miscellaneous

equipment pictured in Fig. 7.4. When testing the policy trained only on the Round environment, we observed

3 collisions, with a total reward of 397 over 1,000 time steps. Using the composite policy, which incorporates

all 4 policies, no collisions were observed during 1,000 time steps. In Fig. 7.5, we visualize the trajectory

obtained by testing the composite policy on the Scarab robot, which shows that the robot successfully

completed multiple loops around the obstacles in the environment.

D Summary

We envision multi-robot systems which can exchange concise representations of their knowledge to enable

distributed learning and control in complex environments with limited communication [7]. In this work, we

take the first step towards this goal by developing and demonstrating the Q-Learning with KNAF algorithm,

which allows the composition of multiple learned policies without additional training samples. Rather than a

single robot collecting information about multiple environments in sequence, multiple robots could work in

parallel and combine their models. We also see a clear path to extend this approach to higher-dimensional

problems using an auto-encoder to learn policies in an RKHS based on a feature space representation, rather

than directly in the state space [150].
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Figure 7.2. Results of 10 experiments over 100, 000 training steps were averaged (black curve) to demonstrate the learning
progress for the robotic obstacle avoidance task with the Round environment. Fig. 7.2a shows the average reward obtained
by the stochastic policy during training shows that the robot was able to complete 5000 simulation steps without crashing
by the end of training. Fig. 7.2b shows the Bellman error for training samples converges to a small non-zero value.
The model order of the & approximation remains under 200 for all ten experiments. The exploration variance Σ was
0.2. Constant learning rates were used, UC = 0.25, VC = 0.25, ZC = 0.001. L was initialized to !0 = 0.01�. For the
KOMP Parameters, we used a Gaussian kernel with a bandwidth of [0.75, 0.75, 0.75, 0.75, 0.75] and a pruning tolerance
of nC = 3.0.
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Figure 7.3. Scarab robot with equipped with an on-board computer, wireless communication, and a Hokuyo URG laser
range finder.

Figure 7.4. We validate our approach by testing policies trained in simulation on a real robot in a laboratory environment.
The policy trained only on the Round environment experienced 3 crashes over 1,000 testing steps. The composite 1/2/3/4
policy in Table 7.2, combined from all four policies, received a reward of 1,000 during 1,000 testing steps, with no crashes.
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Policies / Reward Round Maze Circuit 2 Circuit 1
1 - Round 1000 -11663 -608 -608
2 - Maze 1000 1000 -5 -407
3 - Circuit 2 1000 -11663 1000 196
4 - Circuit 1 1000 -11462 -407 1000
1 / 2 1000 1000 -5 -206
1 / 3 1000 -11663 799 -206
1 / 4 1000 -11261 -206 799
2 / 3 1000 1000 1000 -5
2 / 4 1000 1000 -5 799
3 / 4 1000 -11462 397 397
1 / 2 / 3 1000 1000 799 196
1 / 2 / 4 1000 1000 -5 1000
1 / 3 / 4 1000 -11663 397 799
2 / 3 / 4 1000 1000 799 -206
1 / 2 / 3 / 4 1000 1000 1000 598

Table 7.2: Cross-validation was performed on all possible compositions of the original 4 policies, each of
which was trained on one environment pictured in Fig. 7.1. Each row is a policy composed using Alg 9 of one
or more policies trained using Algorithm 8. All 15 policies were tested on the 4 environments, and compared
based on the reward accumulated over 1,000 time steps in each environment.

Figure 7.5. We visualize the trajectory observed when testing the composite policy (Policy 1/2/3/4) in Table 7.2 on the
Scarab robot. Position coordinates were computed through onboard motor odometry, which results in a small drift in the
position.
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Chapter 8

Conclusions and Future Work

The use of large-scale robot teams could significantly improve the speed of autonomousmapping, infrastructure

inspection, agricultural monitoring, and search and rescue operations. We have developed a set of algorithmic

tools to allow cooperative, autonomous robot systems to scale to dozens of robots. We address the key

scalability issues in the existing algorithms for coordination, control, and communication by designing

machine learning abstractions that leverage graph neural networks and scale efficiently to complex tasks and

large teams of robots. We conclude the thesis by proposing an approach for distributed learning, in which

robots train controllers independently and then compose their representations.

In this dissertation, all controllers were trained in simulation. To deploy these approaches to physical

systems, we anticipate the need for transfer learning from simulation to hardware. The systems are likely to

see to a change the distribution of the observations, due to stochasticity in the control rates and communication

delays of physical systems, requiring re-training or fine-tuning on the physical hardware. While the low-level

collision avoidance controllers may need to be retrained, we envision that the high-level coordination policies

for tasks, such as coverage or exploration, could be transferred zero-shot to the real world. In addition,

the physical implementation of ad-hoc networks may require the development of new low cost networking

hardware and protocols. Also, depending on the hardware used by the robots, the model architecture and the

implementation of graph operations may need to be optimized for real-time inference.

This dissertation also assumes that the teams of robots are homogeneous, with the same capabilities for

control, sensing and communication. The extension of our approach to heterogeneous teams would require

131



the encoding of diverse robot capabilities as part of the team’s graph. The heterogeneous team may also

include human team members, which would require the design of human-robot interfaces for visualizing the

robots’ local information, and updating mission specifications.

Finally, we envision the extension of the GNN methodology to systems of non-cooperative agents. An

adversarial task could require resilience within the team, in which robots need to react to loss of teammembers.

Existing approaches typically require rounds of communication among all teammembers [161], which may be

impractical in large teams. Most situations are not purely cooperative or adversarial. Autonomous driving is

an example of a task in which agents may have competing objectives, but must cooperate for safety. Behavior

prediction of human drivers is a key problem for autonomous driving in urban environments, and GNNs have

already been successfully deployed to encode relationships between agents on a road [162].

132



Bibliography

[1] FlightAware. (2019) Seattle-tacoma international airport. [Online]. Available: https://flightaware.

com/live/airport_status_bigmap.rvt?airport=KSEA

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing Atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.Wierstra, “Continuous

control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] V. Sharma, M. Bennis, and R. Kumar, “UAV-assisted heterogeneous networks for capacity enhance-

ment,” IEEE Communications Letters, vol. 20, no. 6, pp. 1207–1210, 2016.

[5] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile robot mapping with applications

to multi-robot and 3D mapping,” in Robotics and Automation, 2000. Proceedings. ICRA 2000. IEEE

International Conference on, vol. 1. IEEE, 2000, pp. 321–328.

[6] S. Thrun and Y. Liu, “Multi-robot slam with sparse extended information filers,” in Robotics Research.

The Eleventh International Symposium. Springer, 2005, pp. 254–266.

[7] B. Schlotfeldt, D. Thakur, N.Atanasov, V.Kumar, andG. J. Pappas, “Anytime planning for decentralized

multirobot active information gathering,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.

1025–1032, 2018.

[8] J. L. Baxter, E. Burke, J. M. Garibaldi, and M. Norman, “Multi-robot search and rescue: A potential

field based approach,” in Autonomous robots and agents. Springer, 2007, pp. 9–16.

133

https://flightaware.com/live/airport_status_bigmap.rvt?airport=KSEA
https://flightaware.com/live/airport_status_bigmap.rvt?airport=KSEA


[9] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search and rescue with a team of mobile

robots,” in Advanced Robotics, 1997. ICAR’97. Proceedings., 8th International Conference on. IEEE,

1997, pp. 193–200.

[10] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity in large sensor networks,” Ad

Hoc & Sensor Wireless Networks, vol. 1, no. 1-2, pp. 89–124, 2005.

[11] H. S. Witsenhausen, “A counterexample in stochastic optimum control,” SIAM Journal on Control,

vol. 6, no. 1, pp. 131–147, 1968.

[12] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural network architectures for

signals supported on graphs,” IEEE Trans. Signal Process., vol. 67, no. 4, pp. 1034–1049, Feb. 2019.

[13] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tac-

chetti, D. Raposo, A. Santoro, R. Faulkner et al., “Relational inductive biases, deep learning, and graph

networks,” arXiv preprint arXiv:1806.01261, 2018.

[14] B. Chen, B. Dai, and L. Song, “Learning to plan via neural exploration-exploitation trees,” arXiv

preprint arXiv:1903.00070, 2019.

[15] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolutional network technique for the

travelling salesman problem,” arXiv preprint arXiv:1906.01227, 2019.

[16] F. Chen, S. Bai, T. Shan, and B. Englot, “Self-learning exploration and mapping for mobile robots via

deep reinforcement learning,” in AIAA Scitech 2019 Forum, 2019, p. 0396.

[17] J. Paulos, S. W. Chen, D. Shishika, and K. Vĳay, “Decentralization of multiagent policies by learning

what to communicate,” in 2019 IEEE International Conference on Robotics and Automation (ICRA),

Montreal, May 2019.

[18] M. Hüttenrauch, A. Šošić, andG. Neumann, “Deep reinforcement learning for swarm systems,” Journal

of Machine Learning Research, vol. 20, no. 54, pp. 1–31, 2019.

[19] G. A. D. Caro, A. Giusti, J. Nagi, and L. M. Gambardella, “A simple and efficient approach for

cooperative incremental learning in robot swarms,” in 2013 16th International Conference on Advanced

Robotics (ICAR), Nov. 2013, pp. 1–8.

134



[20] A. Giusti, J. Nagi, L. Gambardella, andG. A. D. Caro, “Cooperative sensing and recognition by a swarm

of mobile robots,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct.

2012, pp. 551–558.

[21] M. Otte, “An emergent group mind across a swarm of robots: Collective cognition and distributed

sensing via a shared wireless neural network,” The International Journal of Robotics Research, vol. 37,

no. 9, pp. 1017–1061, Aug. 2018.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in 5th

Int. Conf. Learning Representations. Toulon, France: Assoc. Comput. Linguistics, 24-26 Apr. 2017.

[23] K. Zhou, J. C. Doyle, K. Glover et al., Robust and optimal control. Prentice hall New Jersey, 1996,

vol. 40.

[24] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic regulator for

constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002.

[25] C. Eksin, P. Molavi, A. Ribeiro, and A. Jadbabaie, “Bayesian quadratic network game filters,” in

Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE,

2013, pp. 4589–4593.

[26] A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal processing on graphs,” IEEE Signal

Process. Mag., vol. 31, no. 5, pp. 80–90, Sep. 2014.

[27] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal processing on graphs: Sampling

theory,” IEEE Trans. Signal Process., vol. 63, no. 24, pp. 6510–6523, Dec. 2015.

[28] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with successive local

aggregations,” IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1832–1843, Apr. 2016.

[29] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural networks,” IEEE Transactions

on Signal Processing, vol. 68, pp. 5680–5695, 2020.

[30] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro, “Learning decentralized

controllers for robot swarms with graph neural networks,” in Conference on Robot Learning. PMLR,

2020, pp. 671–682.

135



[31] E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro, “Multi-robot coverage and exploration using spatial

graph neural networks,” arXiv preprint arXiv:2011.01119, 2020.

[32] F. Gama, A. G. Marques, A. Ribeiro, and G. Leus, “Aggregation graph neural networks,” in 44th IEEE

Int. Conf. Acoust., Speech and Signal Process. Brighton, UK: IEEE, 12-17 May 2019.

[33] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics and Au-

tonomous systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[34] A. Khan, E. Tolstaya, A. Ribeiro, and V. Kumar, “Graph policy gradients for large scale robot control,”

in Conference on Robot Learning. PMLR, 2020, pp. 823–834.

[35] P. Toth and D. Vigo, The vehicle routing problem. SIAM, 2002.

[36] L. Perron and V. Furnon. OR-Tools. Google. [Online]. Available: https://developers.google.com/

optimization/

[37] Q. Sykora, M. Ren, and R. Urtasun, “Multi-agent routing value iteration network,” Int. Conf. on

Machine Learning (ICML), 2020.

[38] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning for autonomous driving

with a conformal spatiotemporal lattice,” in 2011 IEEE International Conference on Robotics and

Automation. IEEE, 2011, pp. 4889–4895.

[39] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale traveling-salesman problem,”

Journal of the operations research society of America, vol. 2, no. 4, pp. 393–410, 1954.

[40] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,” in

Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.

[41] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov,

A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https:

//github.com/hill-a/stable-baselines, 2018.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization

algorithms,” arXiv preprint arXiv:1707.06347, 2017.

136

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines


[43] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in Advances in neural

information processing systems, 1989, pp. 305–313.

[44] A. Giusti, J. Guzzi, D. C. Ciresan, F.-L. He, J. P. Rodríguez, F. Fontana, M. Faessler, C. Forster,

J. Schmidhuber, G. Di Caro et al., “A machine learning approach to visual perception of forest trails

for mobile robots.” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 661–667, 2016.

[45] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on

graphs,” in International Conference on Learning Representations (ICLR), Banff, Apr. 2014. [Online].

Available: http://arxiv.org/abs/1213.6203

[46] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast

localized spectral filtering,” in Annu. Conf. Neural Inform. Process. Syst. 2016. Barcelona, Spain:

NIPS Foundation, 5-10 Dec. 2016.

[47] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Median activation functions for graph neural

networks,” in 44th IEEE Int. Conf. Acoust., Speech and Signal Process. Brighton, UK: IEEE, 12-17

May 2019. [Online]. Available: http://arxiv.org/abs/1810.12165

[48] A. Tacchetti, H. F. Song, P. A. M. Mediano, V. Zambaldi, J. Kramar, N. C. Rabinowitz, T. Graepel,

M.Botvinick, andP.W.Battaglia, “Relational forwardmodels formulti-agent learning,” in International

Conference on Learning Representations, New Orleans, May 2019.

[49] H. G. Tanner, “Flocking with obstacle avoidance in switching networks of interconnected vehicles,” in

IEEE International Conference on Robotics and Automation, vol. 3. Citeseer, 2004, pp. 3006–3011.

[50] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in Proceedings of the

14th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’87.

New York, NY, USA: ACM, 1987, pp. 25–34.

[51] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using

nearest neighbor rules,” IEEE Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

137

http://arxiv.org/abs/1213.6203
http://arxiv.org/abs/1810.12165


[52] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable flocking of mobile agents, Part II: dynamic

topology,” in Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 2. IEEE,

2003, pp. 2016–2021.

[53] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least-mean-square deviation,”

Journal of parallel and distributed computing, vol. 67, no. 1, pp. 33–46, 2007.

[54] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured prediction

to no-regret online learning,” in Proceedings of the fourteenth international conference on artificial

intelligence and statistics, 2011, pp. 627–635.

[55] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual and physical simulation for

autonomous vehicles,” in Field and Service Robotics, 2017.

[56] D. Mellinger, “Trajectory generation and control for quadrotors,” Ph.D., University of Pennsylvania,

Philadelphia, 2012.

[57] M. Prandini, L. Piroddi, S. Puechmorel, and S. L. Brázdilová, “Toward air traffic complexity assessment

in new generation air traffic management systems,” IEEE transactions on intelligent transportation

systems, vol. 12, no. 3, pp. 809–818, 2011.

[58] Z. Mahboubi and M. J. Kochenderfer, “Autonomous air traffic control for non-towered airports,” in

Proc. USA/Eur. Air Traffic Manage. Res. Develop. Seminar, 2015, pp. 1–6.

[59] K. Tumer and A. Agogino, “Distributed agent-based air traffic flow management,” in Proceedings of

the 6th international joint Conf. on Autonomous agents and multiagent systems. ACM, 2007, p. 255.

[60] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for mobile robot

navigation,” in Proceedings. 1991 IEEE Int. Conf. on Robotics and Automation. IEEE, 1991, pp.

1398–1404.

[61] P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial potential fields and their

application in real time robot path planning,” in Proceedings of the 2000 Congress on Evolutionary

Computation. CEC00 (Cat. No.00TH8512), vol. 1, July 2000, pp. 256–263 vol.1.

138



[62] K. Ramamoorthy, T. Singh, and J. Crassidis, “Potential functions for en-route air traffic management

and flight planning,” in AIAA Guidance, Navigation, and Control Conf. and Exhibit, 2004, p. 4878.

[63] X. Xu, C. Li, and Y. Zhao, “Air traffic rerouting planning based on the improved artificial potential

field model,” in Control and Decision Conf. (CCDC), 2010 Chinese. IEEE, 2010, pp. 1444–1449.

[64] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Towards search-based motion planning for micro aerial

vehicles,” arXiv preprint arXiv:1810.03071, 2018.

[65] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous navigation,” Neural

Computation, vol. 3, no. 1, pp. 88–97, 1991.

[66] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin planning,” in Proceedings of the

23rd Int. Conf. on Machine learning. ACM, 2006, pp. 729–736.

[67] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in Proceedings

of the twenty-first Int. Conf. on Machine learning. ACM, 2004, p. 1.

[68] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforcement

learning.” in AAAI, vol. 8. Chicago, IL, USA, 2008, pp. 1433–1438.

[69] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep inverse reinforcement learning,”

arXiv preprint arXiv:1507.04888, 2015.

[70] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal control via policy

optimization,” in Int. Conf. on Machine Learning, 2016, pp. 49–58.

[71] E. Tolstaya, A. Ribeiro, V. Kumar, and A. Kapoor, “Inverse optimal planning for air traffic control,” in

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.

7535–7542.

[72] H. Chitsaz and S. M. LaValle, “Time-optimal paths for a Dubins airplane,” in Decision and Control,

2007 46th IEEE Conf. on. IEEE, 2007, pp. 2379–2384.

[73] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion planning for quadrotors using

linear quadratic minimum time control,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ Int.

Conf. on. IEEE, 2017, pp. 2872–2879.

139



[74] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with provable bounds on sub-

optimality,” in Advances in neural information processing systems, 2004, pp. 767–774.

[75] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed

initial and terminal positions and tangents,” American Journal of mathematics, vol. 79, no. 3, pp.

497–516, 1957.

[76] E. T. Jaynes, “Information theory and statistical mechanics,” Physical review, vol. 106, no. 4, p. 620,

1957.

[77] M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal, “Learning objective functions for manipulation,”

in 2013 IEEE Int. Conf. on Robotics and Automation. IEEE, 2013, pp. 1331–1336.

[78] R. Murphy, R. R. Murphy, and R. C. Arkin, Introduction to AI robotics. MIT press, 2000.

[79] F. A. Administration. (2016) Terminal procedures publication. [Online]. Available: https:

//www.faa.gov/air_traffic/flight_info/aeronav/productcatalog/ifrcharts/terminalprocedures/

[80] J. Farrell and M. Barth, The global positioning system and inertial navigation. Mcgraw-hill New

York, 1999, vol. 61.

[81] G. van Drimmelen. (2018) GPS Utils. [Online]. Available: https://gist.github.com/govert/

1b373696c9a27ff4c72a

[82] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion planning for aggressive flight in

SE(3),” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2439–2446, 2018.

[83] S. Community. (2019) Univariate spline. [Online]. Available: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.interpolate.UnivariateSpline.html

[84] B. Williams and T. Camp, “Comparison of broadcasting techniques for mobile ad hoc networks,” in

Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing,

2002, pp. 194–205.

[85] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a mobile ad hoc

networks,” Wireless networks, vol. 8, no. 2, pp. 153–167, 2002.

140

https://www.faa.gov/air_traffic/flight_info/aeronav/productcatalog/ifrcharts/terminalprocedures/
https://www.faa.gov/air_traffic/flight_info/aeronav/productcatalog/ifrcharts/terminalprocedures/
https://gist.github.com/govert/1b373696c9a27ff4c72a
https://gist.github.com/govert/1b373696c9a27ff4c72a
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html


[86] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent communication with backpropagation,”

in Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016,

pp. 2252–2260.

[87] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate with deep

multi-agent reinforcement learning,” in Advances in Neural Information Processing Systems, D. Lee,

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016,

pp. 2137–2145.

[88] A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate at scale in multiagent cooperative

and competitive tasks,” in International Conference on Learning Representations, 2018.

[89] J. P. Inala, Y. Yang, J. Paulos, Y. Pu, O. Bastani, V. Kumar, M. Rinard, and A. Solar-Lezama, “Neu-

rosymbolic transformers for multi-agent communication,” Advances in Neural Information Processing

Systems, vol. 33, 2020.

[90] Y.-C. Liu, J. Tian, N. Glaser, and Z. Kira, “When2com: Multi-agent perception via communica-

tion graph grouping,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 4106–4115.

[91] E. Tolstaya, L. Butler, D. Mox, J. Paulos, V. Kumar, and A. Ribeiro, “Learning connectivity for data

distribution in robot teams,” arXiv preprint arXiv:2103.05091, 2021.

[92] A. Goldsmith, Wireless communications. Cambridge university press, 2005.

[93] U. Challita and W. Saad, “Network formation in the sky: Unmanned aerial vehicles for multi-hop

wireless backhauling,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017,

pp. 1–6.

[94] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss for low altitude

platforms in urban environments,” in 2014 IEEE Global Communications Conference, 2014, pp. 2898–

2904.

[95] R. Shorey, A. Ananda, M. C. Chan, and W. T. Ooi,Mobile, wireless, and sensor networks: technology,

applications, and future directions. John Wiley & Sons, 2006.

141



[96] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov,

A. Nichol et al., “Stable baselines,” 2018.

[97] G.Miao, J. Zander, K.W. Sung, and S. B. Slimane, Fundamentals of mobile data networks. Cambridge

University Press, 2016.

[98] R. Bellman, “The theory of dynamic programming,” DTIC Document, Tech. Rep., 1954.

[99] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The International

Journal of Robotics Research, p. 0278364913495721, 2013.

[100] D. P. Bertsekas and S. E. Shreve, Stochastic optimal control: The discrete time case. New York:

Academic Press, 1978.

[101] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press Cambridge, 2018.

[102] K. Mitkovska-Trendova, R. Minovski, and D. Boshkovski, “Methodology for transition probabilities

determination in a Markov decision processes model for quality-accuracy management,” Journal of

Engineering Management and Competitiveness (JEMC), vol. 4, no. 2, pp. 59–67, 2014.

[103] R. S. Sutton, D. A.McAllester, S. P. Singh, and Y.Mansour, “Policy gradient methods for reinforcement

learning with function approximation,” in Advances in neural information processing systems, 2000,

pp. 1057–1063.

[104] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine learning, vol. 3,

no. 1, pp. 9–44, 1988.

[105] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College, Cambridge,

UK, May 1989.

[106] W. B. Powell and J. Ma, “A review of stochastic algorithms with continuous value function ap-

proximation and some new approximate policy iteration algorithms for multidimensional continuous

applications,” Journal of Control Theory and Applications, vol. 9, no. 3, pp. 336–352, 2011.

[107] R. S. Sutton, H. R. Maei, and C. Szepesvári, “A convergent $ (=) temporal-difference algorithm for

off-policy learning with linear function approximation,” in Advances in neural information processing

systems, 2009, pp. 1609–1616.

142



[108] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA: Princeton University Press, 1957.

[109] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning,” Machine Learning, vol. 16,

no. 3, pp. 185–202, 1994.

[110] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of stochastic iterative dynamic

programming algorithms,” Neural computation, vol. 6, no. 6, pp. 1185–1201, 1994.

[111] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and C. Szepesvári, “Convergent temporal-

difference learning with arbitrary smooth function approximation,” in Advances in Neural Information

Processing Systems, 2009, pp. 1204–1212.

[112] G. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline functions,” Journal of mathemat-

ical analysis and applications, vol. 33, no. 1, pp. 82–95, 1971.

[113] L. Baird, “Residual algorithms: Reinforcement learning with function approximation,” in In Proceed-

ings of the Twelfth International Conference on Machine Learning. Morgan Kaufmann, 1995, pp.

30–37.

[114] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with function approxima-

tion,” IEEE transactions on automatic control, vol. 42, no. 5, pp. 674–690, 1997.

[115] N. K. Jong and P. Stone, “Model-based function approximation in reinforcement learning,” in Proceed-

ings of the 6th international joint conference on Autonomous agents and multiagent systems. ACM,

2007, p. 95.

[116] Y. Ermoliev, “Stochastic quasigradient methods and their application to system optimization,” Stochas-

tics: An International Journal of Probability and Stochastic Processes, vol. 9, no. 1-2, pp. 1–36,

1983.

[117] A. Koppel, G. Warnell, E. Stump, P. Stone, and A. Ribeiro, “Breaking Bellman’s curse of dimension-

ality: Efficient kernel gradient temporal difference,” arXiv preprint arXiv:1709.04221 (Submitted to

TAC Dec. 2017), 2017.

143



[118] S. Grünewälder, G. Lever, L. Baldassarre, M. Pontil, and A. Gretton, “Modelling transition dynamics

in MDPs with RKHS embeddings,” in Proceedings of the 29th International Conference on Machine

Learning, ICML 2012, vol. 1, 2012, pp. 535–542.

[119] B. Dai, N. He, Y. Pan, B. Boots, and L. Song, “Learning from conditional distributions via dual

embeddings,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1458–1467.

[120] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transactions

on signal processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[121] G. Lever, J. Shawe-Taylor, R. Stafford, and C. Szepesvari, “Compressed conditional mean embeddings

for model-based reinforcement learning,” in 30th AAAI Conference on Artificial Intelligence, 2016.

[122] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsimonious online learning with kernels via

sparse projections in function space,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.

83–126, 2019.

[123] E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” Comptes

Rendus Mathematique, vol. 346, no. 9, pp. 589–592, 2008.

[124] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with kernels,” in Advances in neural

information processing systems, 2002, pp. 785–792.

[125] M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient descent: algorithms for mini-

mizing compositions of expected-value functions,”Mathematical Programming, vol. 161, no. 1-2, pp.

419–449, 2017.

[126] A.W.Moore, “Efficient memory-based learning for robot control,” University of Cambridge, Computer

Laboratory, Tech. Rep., Nov. 1990.

[127] K. Yoshida, “Swing-up control of an inverted pendulum by energy-based methods,” in Am. Control

Conf., vol. 6. IEEE, 1999, pp. 4045–4047.

[128] Z. Wang, K. Crammer, and S. Vucetic, “Breaking the curse of kernelization: Budgeted stochastic

gradient descent for large-scale SVM training,” The Journal of Machine Learning Research, vol. 13,

no. 1, pp. 3103–3131, 2012.

144



[129] E. Tolstaya, A. Koppel, E. Stump, and A. Ribeiro, “Nonparametric stochastic compositional gradient

descent for Q-learning in continuous Markov decision problems,” in 2018 Annual American Control

Conference (ACC). IEEE, 2018, pp. 6608–6615.

[130] A. Koppel, E. Tolstaya, E. Stump, and A. Ribeiro, “Nonparametric stochastic compositional gradient

descent for Q-learning in continuous Markov decision problems,” arXiv preprint arXiv:1804.07323,

2018.

[131] S. Chen, A.M.Devraj, A. Bušić, and S.Meyn, “ZapQ-learningwith nonlinear function approximation,”

arXiv preprint arXiv:1910.05405, 2019.

[132] R. Wheeden, R. Wheeden, and A. Zygmund,Measure and Integral: An Introduction to Real Analysis,

ser. Chapman & Hall/CRC Pure and Applied Math. Taylor & Francis, 1977.

[133] V. Norkin and M. Keyzer, “On stochastic optimization and statistical learning in reproducing kernel

Hilbert spaces by support vector machines (SVM),” Informatica, vol. 20, no. 2, pp. 273–292, 2009.

[134] A. Argyriou, C. A. Micchelli, and M. Pontil, “When is there a representer theorem? Vector versus

matrix regularizers,” Journal of Machine Learning Research, vol. 10, no. Nov, pp. 2507–2529, 2009.

[135] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math. Program., vol. 103, no. 1, pp.

127–152, 2005.

[136] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” Journal of Machine Learning Research,

vol. 7, no. Dec, pp. 2651–2667, 2006.

[137] J. Friedman, T. Hastie, R. Tibshirani et al., The elements of statistical learning. Springer series in

statistics New York, 2001, vol. 1, no. 10.

[138] S. B. Gelfand and S. K. Mitter, “Recursive stochastic algorithms for global optimization in '3 ,” SIAM

J. Control Optim., vol. 29, no. 5, pp. 999–1018, 1991.

[139] V. R. Konda and V. S. Borkar, “Actor-critic–type learning algorithms for Markov decision processes,”

SIAM J. Control Optim., vol. 38, no. 1, pp. 94–123, 1999.

[140] V. S. Borkar, “Stochastic approximation with two time scales,” Syst. Control Lett., vol. 29, no. 5, pp.

291–294, 1997.

145



[141] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Transactions

on signal processing, vol. 52, no. 8, pp. 2275–2285, 2004.

[142] P. Vincent and Y. Bengio, “Kernel matching pursuit,” Machine Learning, vol. 48, no. 1, pp. 165–187,

2002.

[143] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari, “Convergence results for single-step on-policy

reinforcement-learning algorithms,” Machine learning, vol. 38, no. 3, pp. 287–308, 2000.

[144] M.Wang andD.Bertsekas, “Incremental constraint projection-proximalmethods for nonsmooth convex

optimization,” SIAM J. Optim., 2014.

[145] OpenAI Gym - continuous mountain car. [Online]. Available: gym.openai.com/envs/

MountainCarContinuous-v0/

[146] F. S. Melo and M. I. Ribeiro, “Q-learning with linear function approximation,” in International

Conference on Computational Learning Theory. Springer, 2007, pp. 308–322.

[147] D. Silver, G. Lever, N. Heess, T. Degris, D.Wierstra, andM. Riedmiller, “Deterministic policy gradient

algorithms,” in International conference on machine learning. PMLR, 2014, pp. 387–395.

[148] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,

“Asynchronous methods for deep reinforcement learning,” in International Conference on Machine

Learning, 2016, pp. 1928–1937.

[149] B. Schölkopf and A. J. Smola, Learning with kernels: support vector machines, regularization,

optimization, and beyond. MIT press, 2002.

[150] C. Richter and N. Roy, “Safe visual navigation via deep learning and novelty detection,” in Proc. of the

Robotics: Science and Systems Conference, 2017.

[151] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-supervised deep reinforcement learning

with generalized computation graphs for robot navigation,” in IEEE International Conference on

Robotics and Automation (ICRA), 2018.

146

gym.openai.com/envs/MountainCarContinuous-v0/
gym.openai.com/envs/MountainCarContinuous-v0/


[152] E. Tolstaya, A. Koppel, E. Stump, and A. Ribeiro, “Nonparametric stochastic compositional gradient

descent for Q-learning in continuous Markov decision problems,” in American Control Conference,

2018.

[153] S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep Q-learning with model-based

acceleration,” CoRR, vol. abs/1603.00748, 2016.

[154] K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf et al., “Kernel mean embedding of

distributions: A review and beyond,” Foundations and Trends in Machine Learning, vol. 10, no. 1-2,

pp. 1–141, 2017.

[155] E. Tolstaya, E. Stump, A. Koppel, and A. Ribeiro, “Composable learning with sparse kernel represen-

tations,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018,

pp. 4622–4628.

[156] D. P. Bertsekas and S. Shreve, Stochastic optimal control: the discrete-time case. Academic Press,

2004.

[157] L. C. Baird, “Reinforcement learning in continuous time: Advantage updating,” in Neural Networks,

1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on,

vol. 4. IEEE, 1994, pp. 2448–2453.

[158] S. J. Sheather and M. C. Jones, “A reliable data-based bandwidth selection method for kernel density

estimation,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 683–690, 1991.

[159] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending the OpenAI Gym for robotics:

a toolkit for reinforcement learning using ROS and gazebo,” arXiv preprint arXiv:1608.05742, 2016.

[160] N. Atanasov, J. Le Ny, N. Michael, and G. J. Pappas, “Stochastic source seeking in complex environ-

ments,” in Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012,

pp. 3013–3018.

[161] B. Schlotfeldt, V. Tzoumas, D. Thakur, and G. J. Pappas, “Resilient active information gathering with

mobile robots,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2018, pp. 4309–4316.

147



[162] S. Casas, C. Gulino, R. Liao, and R. Urtasun, “Spatially-aware graph neural networks for relational

behavior forecasting from sensor data,” arXiv preprint arXiv:1910.08233, 2019.

148


	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Graph Representations of Robot Teams
	The Signal Processing Perspective on Graph Neural Networks
	The Relational Perspective on Graph Neural Networks

	I Coordination for Exploration and Coverage
	Coverage using Spatial Graph Neural Networks
	Multi-Robot Routing for the Coverage Problem
	Methods
	Results
	Summary


	II Decentralized Control and Planning
	Flocking using Delayed Aggregation Graph Neural Networks
	Methods: Learning to Flock
	Results
	High order dynamics
	Summary

	Inverse Optimal Planning for Air Traffic Control
	Planning using the Dubins Airplane Model
	Learning From Demonstrations
	Safety in a Multi-agent System
	Methods and System Architecture
	Results
	Summary


	III Distributed Communication
	Learning Connectivity for Data Distribution in Robot Teams
	Problem Formulation
	Methods
	Results
	Summary


	IV Towards Distributed Learning
	Kernel Q-Learning in Continuous Markov Decision Problems
	Markov Decision Processes
	Stochastic Quasi-Gradient Method
	Practical Considerations
	Convergence Analysis
	Experiments
	Proof of Proposition 1
	Proof of Lemma 1
	Summary

	Composable Learning with Sparse Kernel Representations
	Normalized Advantage Functions in RKHS
	Composable Learning in RKHS
	Simulated & Experimental Evaluations
	Summary

	Conclusions and Future Work
	Bibliography


